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Abstract：Rolling Dynamic Compaction (RDC)，which is a ground improvement technique involving non-circular 

modules drawn behind a tractor，has provided the construction industry with an improved ground compaction capability，

especially with respect to a greater influence depth and a higher speed of compaction，resulting in increased productivity. 

However，to date，there is no reliable method to predict the effectiveness of RDC in a range of ground conditions. This 

paper presents a new and unique predictive tool developed by means of artificial neural networks (ANNs) that permits a 

priori prediction of density improvement resulting from a range of ground improvement projects that employed 4-sided 

RDC modules；commercially known as“impact rollers”. The strong coefficient of correlation (i.e. R＞0.86) and the 

parametric behavior achieved in this study indicate that the model is successful in providing reliable predictions of the 

effectiveness of RDC in various ground conditions.  
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1  Introduction 

 

Compaction is the method of densification of soil 

by means of mechanically applied energy. A rapid 

volume reduction takes place during the compaction 

process due to pore air expulsion，which results in 

particle rearrangement and sometimes crushing. A 

number of methods are widely used in ground 

compaction，such as vibration，impact，kneading and 

static pressure. These different types of compaction 

techniques are essentially subdivided into two categories；

static and dynamic compaction. Static compaction is 

the application of a downward force on the ground 

surface by the self-weight of the equipment，such as 

circular rollers，which usually employ drums，pad 

foots and pneumatic multi-tires. Dynamic compaction 

methods，on the other hand，apply a kinetically-driven 

downward force， in addition to the equipment′s 

self-weight. Dynamic compaction makes use of heavy 

tamping，vibratory drums and plates， rammers，

vibroflotation and rolling dynamic compaction
[1]

. 

Rolling dynamic compaction (RDC) has increasingly 

become popular over the past few decades in the 

global construction industry and provides an alternative 

to the traditional approaches of soil compaction
[2]

. 

RDC was originally developed by Aubrey Berrangé in 

South Africa in the late 1940s，but its value was not 

fully realized until the mid-1980s. It involves towing 

heavy (6–12 tonnes) non-circular modules (3-，4- and 

5-sided)，which rotate about their corners and fall to 

impact the ground
[3]

. For instance，Figure 1 illustrates 

the 4-sided impact roller module，which is towed by a 

tractor. As the impact roller traverses the ground，the 
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module rotates about its corners due to friction，and a 

series of high amplitude blows are delivered to the 

ground at a relatively low frequency of 90 to 130 

blows per minute
[4]
. Thus，the compactive effort is 

derived from the energy of the mass falling from a 

corner to the adjacent compacting face of the polygonal 

shaped mass. This results in deep compaction and a 

greater influence depth – more than 1 m beneath the 

ground surface and sometimes as deep as 3 m in some 

soils
[5]
 – compared to the conventional static and 

vibratory compaction
[6-8]

，which generally influences 

depths less than 0.5 m below the ground. As a result，

thicker lifts，in excess of 0.5 m can be employed       

as compared to traditional compaction lifts of 

approximately 0.15 m
[3 ， 9]

. Furthermore，RDC is 

particularly efficient when employed in large and open 

sites，as it traverses the ground at speeds of 9–12 

km/h compared to traditional vibratory roller，which 

travels at 4 km/h
[2]
. As a consequence，RDC has been 

applied：(1) to the in situ densification of existing     

fills，such as on brownfield sites，landfills，earth 

embankments and sub grade proof-rolling
[10]

；(2) in the 

agricultural sector
[3]
，mainly for the improvement of 

existing water storages，channels and embankments；

(3) in the mining industry for the construction of 

tailing dams
[9]
，rock demolition in open cut mine waste 

tips，compaction of the capping over waste rocks
[11]

，

compaction of bulk earthworks of mine spoil materials 

and to induce fracturing on surface layers in rock 

quarries in lieu of drilling and blasting
[9]
.  

 

 

Fig.1  Four-sided impact roller towed behind a tractor 

 

To date a number of field and case studies have 

assessed the efficacy of RDC. As a result，RDC is 

often adopted based on experience from previous work 

undertaken in similar soils and site conditions. In most 

cases，in order to determine the optimal number of 

RDC passes to achieve the design specifications，a 

field trial is undertaken，where measurements of 

various soil characteristics are obtained before and 

after compaction. 

This study aims to develop a robust predictive 

model to forecast the performance of RDC by means 

of the artificial intelligence (AI) technique known as 

artificial neural networks (ANNs). It is intended that 

the model will provide additional，a priori information 

to supplement field trials undertaken on site prior to 

ground improvement. Attention is focused on the 

4-sided，8 tonne“impact roller”(BH–1300). ANN 

models have been developed based on the cone 

penetration test (CPT) data，which are collected from 

previous ground improvement projects in Australia 

that employed RDC. Design equations are developed 

based on model parameters，and a parametric study is 

carried out to assess the robustness of the model. It is 

important to note that no such predictive model exists 

for RDC，neither empirical，theoretical nor numerical.  

 

2  Database and data analysis 

 

The data used in this study have been obtained 

from the results of several field trials undertaken by 

Broons SA Hire，an Australian company marketing a 

range of ground improvement technologies，including 

RDC. The database is comprised of in situ strength 

data in the form of cone penetration test (CPT) results 

with respect to the number of roller passes. CPT 

measurements provide continuous soil profiles that 

express variations of soil strength in terms of cone tip 

resistance (
c
q ) and sleeve friction (

s
f ). The CPT is 

often used as a profiling tool employing the friction 

ratio，which is the ratio，expressed as a percentage，

of sleeve friction to cone tip resistance，measured at 

the same depth. The literature contains several soil 

classification charts based on the friction ratio as a 

function of cone tip resistance
[12]

.  

The CPT
[13]

 has been widely used for monitoring 

and evaluating the effectiveness of deep compaction 

methods because of the continuous， reliable and 

repeatable nature of the measurements
[14]

. D. L. Avalle 
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and J. P. Carter
[5]

 investigated the depth of influence of 

RDC in sandy soils using CPT profiles of prior to and 

after impact rolling，where a noticeable improvement 

was evident between depths of approximately 0.5–

3 m below the ground surface. Moreover，research by 

D. B. Kelly
[15]

 presented the results from CPTs where 

a significant depth of influence of RDC was evident to 

depths of 4 m in natural sand and un-compacted/ 

un-controlled variable clay fill，and in the reclaimed 

sand deposit to the depths of 5 m below the surface. 

Another recent case study conducted by B. T. Scott 

and M. B. Jaksa
[16]

 reported on the verification of 

RDC，both vertically and laterally，in a sand fill having 

quantified the differences in cone tip resistance 

between a series of closely-spaced CPT locations.  

The database used for ANN modelling is 

summarized in Table 1 and the data were acquired 

from Broons′ records of previous projects. Figure 2 

shows typical plots of cone tip resistance and sleeve 

friction measurements which are obtained at 

essentially the same location prior to (0 passes) and 

after (10 passes and 20 passes) of RDC. As can be 

seen， there is a noticeable variation in cone tip 

resistance and sleeve friction measurements with 

respect to the number of roller passes. The differences 

between these individual measurements quantify the 

variation of soil strength and density，as well as a 

minor degree of spatial variation，resulting from RDC 

at the test location. 

However，the CPT measurements are influenced 

by large，hard particles present in the compaction 

material and may not be representative of the 

subsurface condition ， particularly at sites with 

uncontrolled fill. As a result，some localized peaks are 

visible in the CPT measurements，predominantly in the 

cone tip resistance measurements. As such，the CPT 

measurements are often accompanied by data 

anomalies that require a further processing and 

interpretation prior to their use in ANN modeling. 

However，in the data pre-processing，these anomalies 

are filtered from the dataset，otherwise the derived 

ANN models will be vulnerable to learning these 

random and unrepresentative irregularities. This is 

achieved by scrutinizing the individual CPT plots and 

manually removing the unreliable measurements，

based on experience of the CPT operation and 

procedure，the local geological conditions and past 

experience with similar project sites. For instance，

during the data preprocess the CPT plots were 

scrutinized to identify the sudden variations of CPT 

measurements. Because，the CPT soundings are often 

influenced by large，hard particles present in the 

compaction material and the data may not be 

representative of the subsurface condition，particularly 

at sites with uncontrolled fill. As a result，some 

localized peaks are visible in the CPT measurements，

predominantly in the cone tip resistance measurements. 

In that case，a number of CPT plots from adjacent CPT 

soundings are superimposed to highlight the localized 

peaks present due to the spatial variability of the 

compacted material. These measurements were 

removed from the data set during the preprocessing 

stage. However，it should be noted that the dataset still 

contains several measurements of 
ci
q  and 

cf
q  that 

can be considered as higher than usual. In such 

circumstances，the authors had no compelling reason 

to consider them as unrealistic，rather considering 

them to be related to a very firm soil.  

In this study，CPT measurements are considered 

for the depth range of 0.1 m to 4 m. It is well 

established in RDC，that a significant reduction in the 

soil strength in the upper 0.1 m is always evident due 

 

Table 1  Summary of CPT plots 

No Project name Max. depth/m No. of CPT locations Soil type No. of roller passes at the time of test 

1 Port Botany 9.8 64 
Sandy/silty sandy fill overlying marine  
deposits of sand and peaty clay deposits 

0，10，20，30，40 

2 Potts Hill 8.8 19 
Shale fill overlying residual soil  

and sandstone bedrock 
0，10，20，30，40 

3 Outer Harbor 3.8  8 
Uncontrolled fill overlying St.  

Kilda formation soils 
0，24  

4 Banksmeadow 6.2  3 Silty sandy filling overlying natural sands 0，5，20  

5 Cairns 4.9  9 
Uncontrolled fill underlain by silty  

clay/clayey silt/sandy silt 
0，20，30，40  
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(a) Cone tip resistance 

 
(b) Sleeve friction 

Fig.2  Variation with number of roller passes of CPT  

parameters 

 

to the surface disturbance caused by the RDC module
[9]

. 

For this reason，the near-surface CPT records (＜0.1 m) 

have been removed from the dataset. However，below 

this depth (0.1 m onwards)，cone tip resistance is 

expected to increase with increasing number of roller 

passes，with a steady decrease down to the depth of 

influence，which is dependent on the subsurface 

material. It has been demonstrated by several 

researchers that RDC influences the ground to depths 

of 3 m and beyond depending on the soil type and 

ground conditions
[5，15，17]

. Hence，CPT measurements 

are considered to a depth of 4 m for each of the RDC 

project sites considered. Although the CPT readings 

from the RDC projects are available at 20 mm depth 

intervals，the values are averaged over 0.2 m depth 

intervals for each CPT sounding when incorporated in 

the ANN modeling in order to obtain a compromise 

between model parsimony and predictive accuracy. 

Figure 3 shows an example of this arithmetic 

averaging process with respect to cone tip resistance 

and sleeve friction. 
 

 
(a) Cone tip resistance 

 
(b) Sleeve friction measurements 

Fig.3  Example arithmetic average plots 

 

3  Artificial neural networks (ANNs) 

 

AI techniques，especially ANNs，have shown 

much better success in modelling complex problems 

than traditional approaches，due to their superior 

predictive ability. ANNs are one of the data-driven 

techniques that do not require a priori knowledge of 

the relationships between variables
[18]

. In spite of that，

they utilize data to approximate both the optimal 

model structure as well as the unknown model 

parameters
[19]

. Thus ， ANNs are well suited for 
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modeling complex problems ， where non-linear 

patterns among the variables exist with undetermined 

relationships
[20]

. In contrast，most of the conventional 

statistical methods are model driven and often require 

the structure of the model to be established prior to 

parameter estimation
[21]

. Another advantage that ANNs 

possess over traditional statistical modeling，is their 

flexibility of implementation. A simple modification to 

the transfer function or the number of nodes in a 

hidden layer can greatly affect the ANN model′s 

complexity
[21-22]

. Additionally，a number of research 

studies have shown that ANNs overcome these 

limitations and outperform traditional methods，e. g. Y. 

M. Najjar，et al.
[23-28]

. 

In this study，CPT-based ANNs are developed for 

the prediction of the effectiveness of RDC. ANN 

modeling is carried out using the PC-based software，

NEUFRAME version 4.0
[29]

. The process adopted in 

the ANN model development is well established in the 

literature
[30]

 and involves the determination of model 

input (s)/output (s)，data division，selection of model 

architecture，optimization of network structure，model 

validation and performance evaluation.  

Prior to model development， the database is 

divided into two subsets： 

(1) Modeling dataset–This is used to train and 

validate the ANN models and consists of 1，755 

records from 91 CPT soundings in total. This dataset is 

further divided into three subsets：training，testing and 

validation. Their statistics and applicability are 

discussed later in this paper. 

(2) Verification dataset–Further verification of the 

developed ANN model is carried out by introducing a 

new unseen data set，which is not a part of the 

modeling stage in any capacity. The dataset comprises 

several CPT soundings randomly chosen from each of 

the RDC projects included in Table 1 and accounts for 

different numbers of roller passes. It is important to 

note that this particular dataset functions the same as 

the validation subset，but differs in that it contains the 

entire data record of each CPT sounding over the full 

depth (from 0.1 m to 4 m) and is not mixed with 

several other CPT soundings. A total of 222 records 

are used in the verification dataset taken from 12 CPT 

soundings. 

In the present study，appropriate model inputs and 

outputs are defined based on the prior knowledge of 

the fundamental factors that influence ground density 

improvement by means of soil compaction. It is 

understood that the degree of soil compaction depends 

upon key factors including：the inherent physical 

properties of the soil，such as initial density，moisture 

content，soil type；and the amount of energy imparted 

to the ground. Therefore，4 parameters，the depth of 

measurement (D)，cone tip resistance (
ci
q ) and sleeve 

friction (
si
f ) prior to compaction，and the number of 

roller passes (P)，are selected as potential input 

variables for the ANN models. In order to predict the 

level of ground improvement，the models include a 

single output variable，the cone tip resistance after 

compaction (
cf
q ). The inclusion of sleeve friction，

together with cone tip resistance，provides an indirect 

and useful representation of soil type in the ANN 

models through the friction ratio. The number of roller 

passes effectively expresses the amount of energy 

imparted to the soil，as the ANN model is unique to a 

specific RDC module；in this case the 4-sided，8 tonne 

impact roller. The statistics of model variables are 

graphically represented in Figure 4 and summarized in 

Table 2. It is worth noting that several other factors 

that affect the degree of soil compaction are not  
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(c) fsi 

 

(d) P 

 

(e) qcf 

Fig.4  Histograms of the data used in the ANN model  

development 

 

included in the models as direct input variables. 

Especially，the soil moisture content is not included as 

a direct measure due to the fact that such measurements 

were unavailable，as moisture content is not routinely 

measured，particularly in the case of cone penetration 

testing. However，it is apparent that penetration test 
 

results，including those from the CPT，are dependent 

upon the moisture content of the soil at the time of 

testing，and thus，soil moisture is indirectly incorporated 

in the selected model input variables. 

Since the widely adopted cross validation 

technique
[31]

 is used as the stopping criterion in the 

ANN model development，it requires the dataset to be 

divided into three subsets：training，testing and 

validation，as mentioned above. The training set is 

used to train and calibrate the model and it is with this 

data subset that the model′s connection weights are 

optimized. While the training progresses，model 

performance is assessed periodically with respect to 

the testing set. When the testing error begins to 

increase，even though the error obtained using the 

training set might continue to decrease，training is 

terminated to avoid overfitting and hence preserve its 

generalization ability. After model calibration，the 

validation data are used to validate the performance of 

the model using data unseen during model 

development. However，as described in the literature，

e. g. A. S. Tokar，et al.
[32-33]

，the method used to divide 

the data into their subsets may adversely affect ANN 

model performance and thus in this study data division 

is carried out using self-organizing maps (SOMs)
[34]

. 

The SOM method is beneficial since it involves 

dividing the dataset in such a way that the subsets are 

statistically consistent and effectively represent the 

same population. The statistical properties considered 

in this study include the mean，standard deviation，

minimum，maximum and range. ANNs are considered 

as an interpolation technique and models are expected 

to perform well when they do not extrapolate beyond 

the set limits of the training set
[35-36]

. Therefore，it is 

essential during data division to ensure that the 

training set contains all the possible patterns included 

in the dataset so that the final ANN model is as general  

Table 2  Statistical properties of the data used in the ANN model development 

Value types 
Depth， 

D/m 

Cone tip resistance  

prior to compaction， 

qci/MPa 

Sleeve friction prior 

to compaction， 

fsi/kPa 

No. of Roller  

Passes，P 

Cone tip resistance  

after compaction， 

qcf/MPa 

Minimum 0.20  0.19   1.67  5.00  0.17 

Maximum 4.00 50.65 473.86 40.00 50.36 

Mean 1.98  9.34 102.78 26.69 10.44 

Standard deviation 1.12  8.16  71.37  9.97  8.29 
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as possible. As such，it has been ensured that the 

maximum and minimum of each variable are included 

in the training dataset，which is ultimately employed 

for ANN model calibration. Moreover，with the aim of 

incorporating as many data patterns as possible within 

the training set，the data are divided in such a way that 

the training set contains 80% of the data and the 

remaining 20% are used for validation purposes. As 

such，a higher percentage of the total data is used in 

the training set to ensure that the model calibrated to 

as many data patterns as possible. However， the 

training set is further divided into two subsets；80% for 

training and 20% for testing. However，when using the 

SOM method there is no absolute rule when selecting 

the most favorable map size and，for that reason，

several map sizes (e.g. 5×5，10×10) are examined and 

the map size which ensures the maximum number of 

clusters is considered to be optimal. Additionally，the 

datasets of each RDC project mentioned in Table 1 are 

individually subjected to SOM data division，rather 

than introducing the entire dataset into a single SOM. 

This ensures an even distribution of variables that 

represent the site-specific characteristics among the 

three subsets，and especially the training set，which 

will incorporate as many data patterns as possible. The 

selected optimal map sizes for the Port Botany and 

Potts Hill projects are 20×20 and 10×10，respectively，

while 5×5 is optimal for the Outer Harbor ，

Banksmeadow and Cairns projects. Thereafter，the 

individually divided datasets are combined to form the 

three major subsets：training，testing and validation，

and their statistics are shown in Table 3. 

Once the available data are divided into the three 

subsets，data pre-processing is carried out using the 

min-max normalization method. In data normalization，

all model variables are scaled into a single range that 

is commensurate with the limits of the activation 

function used in the output layer
[36]

. This can expedite 

the model training rate and ensures that all the 

variables receive equal attention during the model 

training phase. For the ANN modelling undertaken in 

the present work，the logistic transfer function is used 

in the output layer and therefore the model variables 

are scaled between 0.1 and 0.9. Following the model  

 

Table 3  ANN input-output summary statistics for the training， 

testing and validation data 

Statistical 

parameters 
Value types 

Model variables 

D/m qci/MPa fci/kPa P qcf/MPa 

Training 

Mean 

1.95 9.33 103.36 26.59 10.42 

Testing 2.03 9.32 99.23 27.21 10.50 

Validation 2.03 9.39 103.54 26.62 10.43 

Training 

Standard  

Deviation 

1.11 8.23 71.76 9.94 8.30 

Testing 1.14 8.37 71.29 9.64 8.66 

Validation 1.14 7.83 70.37 10.30 8.03 

Training 

Minimum 

0.20 0.19 1.67 5.00 0.17 

Testing 0.20 0.30 8.70 5.00 0.29 

Validation 0.20 0.32 7.08 5.00 0.39 

Training 

Maximum 

4.00 50.65 473.86 40.00 50.36 

Testing 4.00 47.39 441.04 40.00 45.12 

Validation 4.00 47.94 470.29 40.00 46.20 

Training 

Range 

3.80 50.46 472.19 35.00 50.19 

Testing 3.80 47.09 432.34 35.00 44.83 

Validation 3.80 47.63 463.21 35.00 45.81 

 

calibration phase，it is necessary to de-normalize the 

network output by reverse scaling. In this work，

multi-layer perceptron (MLP) models are developed 

with the use of the error back-propagation method. 

The feed forward type MLP is the most common 

network architecture used for prediction and forecasting 

applications
[30]

 whereas，the error back-propagation 

method
[37]

 is by far the most widely used algorithm for 

optimizing feed forward ANNs. A comprehensive 

description of the MLPs trained with the error 

back-propagation algorithm is beyond the scope of the 

paper but is well documented in the literature
[38]

. 

The selected MLP network architecture is 

comprised of three layers：the input layer，one hidden 

layer and the output layer. It has been demonstrated 

that one hidden layer can approximate any continuous 

function by providing a sufficient number of connection 

weights
[39-40]

. The number of nodes in the input and 

output layers represent the number of model inputs 

and outputs and thus the models consist of 4 nodes in 

the input layer：depth (D)，cone tip resistance (qci) and 

sleeve friction ( fsi) prior to compaction and the 

number of RDC module passes (P). Since the models 

have a single output variable，i.e. cone tip resistance at 

depth (D) after the P module passes (qcf)，the output 
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layer consists of a single output node. Optimization of 

the number of hidden nodes is a crucial aspect of ANN 

model development and it is essential to achieve a 

structure that is neither too complex nor too simple but 

adequately captures the nuances contained in the training 

data. Therefore， to identify the optimal network 

architecture/topology a stepwise trial-and-error 

procedure is used，as is usual practice in ANN model 

development
[30]

. On this regard，several ANN models 

are trained，starting from the smallest possible network 

involving a single hidden node and successively 

increasing the number of hidden nodes to a maximum 

of 9. As suggested by M. Caudill
[41]

，2I+1 is the upper 

limit of hidden nodes for a network to map any 

continuous function，with I being the number of input 

nodes，and accordingly 9 nodes are considered to be 

the maximum number of hidden nodes required for the 

models. 

In order to obtain the optimal model，ANN 

parameters，such as learning rate，momentum and 

transfer function，are sequentially varied. ANN models 

are initially trained with the default software 

parameters (i.e. learning rate = 0.2，momentum term = 

0.8 and the sigmoidal transfer function) are used for 

both the hidden and output layers. After determining 

the best topology， the network with the optimal 

number of hidden nodes is subjected to different 

combinations of learning rates and momentum terms. 

In addition，as the backpropagation algorithm is based 

on the steepest descent method，the obtained network 

results may be sensitive to the initial weight 

conditions
[22]

. Therefore，the selected ANN model is 

retrained several times after randomizing the initial 

weight allocations to ensure that model training does 

not cease at sub-optimal levels.  

Upon the completion of ANN model calibration，

the networks undergo model validation using the 

validation dataset. As mentioned earlier，this dataset is 

not used in the training process in any capacity and 

therefore，it is able to provide a rigorous assessment of 

the network′s predictive and generalization ability. The 

criteria used to evaluate the performance of the trained 

network include the root mean square error (RMSE)，

mean absolute error (MAE) and coefficient of correlation 

(R). The prediction accuracy of a well-trained ANN 

model is represented by the smaller error values and 

an R value close to unity
[42]

. 

 

4  Results of ANN model optimization 

 

The performance statistics of the developed 

models in terms of RMSE，MAE and R value are 

summarized in Table 4，where the model architecture，

i.e. the number of hidden nodes，is varied. These 

performance measures are compared in order to select 

the optimum model topology which yields the best 

predictions. 

As can be observed，good consistency is 

obtained with respect to the RMSE，MAE and R 

values among the three data sets：training，testing 

and validation. This implies that the model 

performance with respect to each of these three subsets 

is very similar，which in turn，indicates the given 

subsets represent the same population and that the 

SOM method for data division is effective. In order to 

select the optimal ANN model，as mentioned 
 

Table 4  Performance results of ANN models with different numbers of hidden nodes 

Hidden 

nodes 

Training set Testing set Validation set 

R RMSE/MPa MAE/MPa R RMSE/MPa MAE/MPa R RMSE/MPa MAE/MPa 

1 0.844 4.59 3.11 0.860 4.61 3.11 0.850 4.38 3.07 

2 0.861 4.27 2.87 0.860 4.48 2.99 0.859 4.14 2.82 

3 0.861 4.26 2.87 0.861 4.45 2.98 0.859 4.13 2.82 

4 0.866 4.19 2.89 0.867 4.33 3.03 0.860 4.16 2.93 

5 0.872 4.13 2.89 0.868 4.34 3.09 0.853 4.29 3.06 

6 0.872 4.14 2.90 0.869 4.33 3.07 0.853 4.29 3.07 

7 0.865 4.21 2.91 0.866 4.35 3.04 0.860 4.17 2.94 

8 0.866 4.17 2.85 0.867 4.32 2.97 0.860 4.13 2.87 

9 0.862 4.23 2.84 0.863 4.41 2.95 0.859 4.12 2.79 
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previously，a compromise between predictive accuracy 

and model parsimony is sought. As such，when it is 

compared the performance statistics， the network 

with 4 hidden nodes，as shown in bold in Table 4，is 

deemed to have a strong correlation coefficient，i.e.       

R＞0.8
[42]

 and comparatively low prediction errors，

i.e. RMSE = 4.16 MPa and MAE = 2.93 MPa with 

respect to the validation set data. Moreover，it can be 

observed that these performance statistics are 

consistent with the training and testing set data. 

However，at the same time，it is also apparent that 

the networks with a higher number of hidden layer 

nodes，for instance 7 and 8 hidden node networks，

exhibit a slightly superior performance in terms of R，

RMSE and MAE compared to those of the 4 hidden 

node network. Nevertheless，from a model parsimony 

perspective， the network with 4 hidden nodes is 

preferred. As a consequence，the model with 4 hidden 

nodes，as shown in bold in Table 4，is selected to be 

optimal. However，additionally，the multiple hidden 

layer (i.e. 2 and 3 hidden layers) models are also 

investigated but，a significant improvement in model 

performance over the selected optimal single layer 

model is not experienced. Therefore，in the interest of 

selecting a more parsimonious model，a single hidden 

layer，4 hidden node network is considered to be 

optimal，which also facilitates the development of a 

tractable and useable form of the ANN model，as will 

be discussed later. In order to refine further the model 

with 4 hidden layer nodes，the learning rate and the 

momentum terms are varied，as summarized in Table 5. 

From this analysis，it is observed that the model with 

a learning rate of 0.2 and momentum of 0.8 performs 

best. 
 

Table 5  Effect of varying momentum terms and learning rates on the optimum model 

Learning  

rate 

Momentum 

term 

Training set Testing set Validation set 

R RMSE/MPa MAE/MPa R RMSE/MPa MAE/MPa R RMSE/MPa MAE/MPa 

0.2 0.1 0.861 4.22 2.88 0.862 4.39 2.99 0.860 4.10 2.85 

0.2 0.2 0.861 4.22 2.90 0.862 4.39 3.01 0.860 4.11 2.87 

0.2 0.4 0.862 4.21 2.88 0.862 4.39 3.00 0.860 4.11 2.87 

0.2 0.5 0.862 4.26 2.86 0.861 4.47 2.98 0.859 4.13 2.82 

0.2 0.6 0.862 4.20 2.85 0.863 4.37 2.98 0.861 4.10 2.84 

0.2 0.7 0.862 4.20 2.85 0.861 4.39 2.99 0.858 4.12 2.84 

0.2 0.8 0.866 4.19 2.89 0.867 4.33 3.03 0.860 4.16 2.93 

0.2 0.9 0.868 4.26 3.04 0.868 4.40 3.20 0.860 4.28 3.13 

0.05 0.6 0.860 4.23 2.88 0.861 4.40 2.99 0.860 4.10 2.85 

0.1 0.6 0.865 4.17 2.84 0.865 4.35 2.98 0.861 4.11 2.85 

0.3 0.6 0.871 4.13 2.79 0.866 4.39 2.96 0.858 4.16 2.83 

0.4 0.6 0.864 4.18 2.84 0.865 4.35 2.97 0.861 4.10 2.83 

0.5 0.6 0.871 4.07 2.76 0.865 4.35 2.98 0.856 4.14 2.87 

0.6 0.6 0.873 4.14 2.79 0.864 4.48 2.98 0.855 4.24 2.87 

0.7 0.6 0.872 4.50 3.11 0.866 4.80 3.28 0.852 4.59 3.23 

0.8 0.6 0.873 4.59 3.53 0.865 4.79 3.74 0.854 4.78 3.78 

0.05 0.8 0.865 4.17 2.84 0.865 4.34 2.98 0.861 4.11 2.84 

0.1 0.8 0.862 4.21 2.87 0.862 4.39 2.99 0.860 4.10 2.85 

0.3 0.8 0.867 4.35 2.92 0.866 4.57 3.04 0.861 4.27 2.92 

0.4 0.8 0.870 5.30 4.26 0.864 5.38 4.44 0.849 5.49 4.54 

0.5 0.8 0.873 4.29 3.13 0.865 4.52 3.34 0.855 4.45 3.35 

0.6 0.8 0.870 5.54 4.47 0.870 5.54 4.59 0.854 5.76 4.85 

0.7 0.8 0.874 4.05 2.73 0.864 4.38 2.91 0.856 4.16 2.81 

0.8 0.8 0.875 4.28 3.12 0.868 4.49 3.32 0.858 4.43 3.33 
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Figure 5 presents a plot of predicted and 

measured cone tip resistance after compaction (qcf) 

with respect to the data in the testing and validation 

sets，in which the solid lines represent the linear trend  

line fitted to the predicted values and the dotted line 

indicates perfect prediction. It can be clearly seen that 

there is minimal scatter，the solid and dotted lines are 

in relatively close agreement，and hence the model 

performs well. 
 

 

(a) Testing set data 

 
(b) Validation set data 

Fig.5  Actual versus predicted qcf for the optimum ANN model  

with respect to 

 

As a further measure， the histogram of the 

optimal ANN model predictions versus the measured 

data with respect to the validation data set is shown in 

Figure 6. The x-axis presents the prediction error (PE) 

of the validation set，which is the ratio of model 

predicted qcf to the measured qcf，while the y-axis 

expresses the corresponding frequencies. As such，the 

solid line represents the distribution of PE，with ideal 

performance indicated by a ratio of unity，as shown on 

the figure by the dashed line. It can be clearly seen，

with respect to the validation set data，that the PE 

distribution produces relatively high frequencies 

around unity. Hence，it is evident that the model 

predictions are in good agreement with the measured 

data. 
 

 
Fig.6  The distribution of the prediction error in the  

validation set data 

 

5  Further verification of selected 

optimum ANN model 

 

The capabilities of the optimal ANN model are 

further evaluated by introducing a series of unseen 

complete CPTs to the model. Details of this dataset 

were discussed earlier and the performance of the 

model with respect to these additional CPTs is 

summarized in Table 6 and Figure 7. As is evident，the 

model performs very favorably. 

 

Table 6  Model performance on the verification data set 

CPT location R RMSE/MPa MAE/MPa 

Port Botany - 30 0.955 3.63 3.39 

Port Botany - 11 0.840 3.65 2.86 

Port Botany - 45 0.971 6.06 5.30 

Port Botany - 35 0.723 3.75 2.51 

Potts Hill - 37/44 0.422 3.15 2.12 

Potts Hill - 27/54 0.436 2.23 1.93 

Potts Hill - 24/57 0.530 2.88 2.17 

Outer Harbor - EFC 5 0.838 3.15 2.84 

Banksmeadow - C3 0.141 2.49 1.90 

Cairns-CPT 2 0.613 4.26 2.95 

Cairns-CPT 5 0.794 2.83 2.31 

Cairns-CPT 8 0.943 2.55 2.27 
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(a) Port Botany–30                          (b) Port Botany–11                          (c) Port Botany–45 

       
(d) Port Botany–35                       (e) Potts Hill-CPT 37/44                        (f) Potts Hill-CPT 27/54 

       
(g) Potts Hill-CPT 24/57                      (h) Outer Harbor-EFC 5                       (i) Banksmeadow-C3 
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(j) Cairns-CPT 2                           (k) Cairns-CPT 5                            (l) Cairns-CPT 8 

Fig.7  Plots of actual and model predicted CPT results 

 

 

6  Robustness of the optimum ANN 

model 

 

Finally， the validity and the accuracy of the 

optimal model are tested by examining how well the 

model predicts outputs that are consistent with the 

underlying physical behavior of the system. 

Therefore，to assess the generalization ability and the 

robustness of the selected optimal ANN model，a 

parametric study is carried out as recommended by M. 

A. Shahin et al.
[43]

. This involves investigating the 

response of the model output using a synthetic input 

data set，where the input variables are varied one at a 

time，while all other input variables remain at a 

pre-specified value. For this study，the output，qcf，is 

examined while the input variables are varied in turn 

as follows：qci = 2，5，8，15，20 MPa，fsi = 50，100，

150，200 kPa and P = 10，20，30，40. However，as 

mentioned earlier，ANNs perform best when they are 

used to interpolate
[35]

. Thus，the generated，hypothetical 

input variables are specified so that they lie within the 

ranges of the data used in the ANN model 

development. The resulting model predictions are 

presented in Figures 8–11. 

It is observed that the model predictions from the  
 

          
(a) fsi = 50 kPa                                             (b) fsi = 100 kPa 
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(c) fsi = 150 kPa                                           (d) fsi = 200 kPa 

Fig.8  Variation of qcf with different number of roller passes at qci = 2 MPa 

       
(a) fsi = 50 kPa                                             (b) fsi = 100 kPa 

       
(c) fsi = 150 kPa                                          (d) fsi = 200 kPa 

Fig.9  Variation of qcf with different number of roller passes at qci = 5 MPa 
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(a) fsi = 50 kPa                                             (b) fsi = 100 kPa 

       
(c) fsi = 150 kPa                                          (d) fsi = 200 kPa 

Fig.10  Variation of qcf with different number of roller passes at qci = 8 MPa 

 

       
(a) qci = 15 MPa，fsi = 50 kPa                                   (b) qci = 15 MPa，fsi = 100 kPa 
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 (c) qci = 20 MPa，fsi = 50 kPa                                   (d) qci = 20 MPa，fsi = 100 kPa 

Fig. 11. Variation of qcf with different number of roller passes 

 

parametric study are in a good agreement with the 

expected behavior of RDC compaction. For instance，

as illustrated in Figure 8(a)，there is a consistent 

increase in qcf as the number of roller passes，P，

increase from 10 to 40，while qci and fsi remain 

constant at 2 MPa and 50 kPa，respectively. These 

model predictions clearly demonstrate the improvement 

in strength resulting from the increasing number of 

roller passes at the same given location. Similarly，as 

shown in Figures 8(b)–(d)，increasing trends of qcf 

with increasing P are also observed at different fsi 

values varying between 100 and 200 kPa while qci 

remains constant at 2 MPa. In addition，Figures 8–10 

indicate that qcf is less affected by fsi，resulting in only 

modest changes in the predicted qcf. Nevertheless，it is 

evident from the parametric study that the distinct 

non-linear relationship between qcf and P has been 

appropriately captured by the developed ANN model.  

It is noted，from Figures 8–10，that the 

predictions of qcf yield appropriate trends with 

increasing numbers of roller passes and depth. In 

contrast，however，Figure 11 displays less satisfactory 

predictions when the qci values are relatively large，     

e.g. 15 and 20 MPa，when the ground is initially quite 

dense. This may be attributed to the fact that the ANN 

model has been calibrated successfully mostly for 

lower values of qci. Figure 12 shows the histograms of 

both the qci and qcf records included in the training 

dataset and which have been used in the model 

calibration. The dotted vertical lines indicate the mean 

values of qci and qcf values in the training subset，

which are 9.33 and 10.42，respectively. As indicated，

the histograms for the qc records contain a higher 

proportion in the lower range with respect to the mean 

values. Moreover，the data distributions are skewed to 

the left-hand side and exhibit sharp peaks rather than 

being normally distributed around the mean. Hence，as 

a result of this，it is likely that the model predictions 

are less satisfactory with regards to soil with high qci 

values because of the paucity of such data available 

from previous RDC projects. This is likely due to the 
 

 

Fig.12  Data distribution of cone tip resistance values in  

training data set 
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fact that RDC is normally applied to ground which is 

initially loose and not dense. Hence，it is suggested 

that the optimal ANN model can be used with 

confidence when the qci values are below 10 MPa. 

 

7  MLP-based Equation 

 

Having finalized the optimal MLP model，in 

order to facilitate its adoption in practice， it is 

disseminated as a series of simplified equations. The 

optimal model structure is shown in Figure 13 and the 

associated weights and biases are presented in Table 7. 

These weights are utilized in the development of the 

equation resulting from the ANN model.  
 

 

Fig.13  The structure of the optimum four hidden nodes  

network 

 

The equation，which relates the input and output 

variables
[44]
 can be written as follow： 

8 4
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Where，
k

O is the single output variable，
k
θ is the 

threshold value of the
th
k output node in the output 

layer and kj
W is the connection weight between the th

j  

 

node in the hidden layer and the
th
k node in the output 

layer. Similarly， j
θ is the threshold value of the th

j

hidden node and ji
W is the connection weight between 

the
th
i input node and the th

j
 
hidden node. The 

parameter
i
I is the

th
i input variable and sig

f is the 

sigmoid transfer function.  

Equation (1) can be simplified as follows： 
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The input variables
1
I ，

2
I ，

3
I and

4
I represent the 

depth below the ground surface (m)，
ci
q
 
(MPa)，

si
f
 

(kPa) and the number of roller passes，P，respectively. 

However，it should be noted，as mentioned above，that 

the input variables are required to be scaled down 

prior to them being used in Equations (2) and (3). 

Therefore，the actual input variables (
unscaled
I ) are 

scaled between 0.1 and 0.9 using Equation (4) in 

accordance with the given extremes of the training 

dataset which has been shown in Table 3. 

 unscaled

scaled

( )( )

( )

I A b a
I a

B A

− −

= +

−

         (4) 

Where，A and B are the minimum and maximum 

values of the unscaled dataset，respectively. Similarly，

the minimum and maximum values of the scaled 

dataset are denoted by a and b，which are equal to 0.1 

and 0.9 in this study. 

With reference to Figure 13 and according to the 

connection weights in Table 7，the mathematical 

equation for the optimal ANN model containing 4 

Table 7  Weights and threshold levels of the optimum ANN model 

Hidden nodes 
Weight from node i in the input layer to node j in the hidden layer wji 

Hidden layer threshold (θ j) 
i =1 i =2 i =3 i =4 

j = 5 1.190 –8.585 0.754 –0.128 –1.200 

j = 6 –1.677 –1.592 0.310 –1.300 0.224 

j = 7 –0.709 –1.474 0.157 –0.369 –0.232 

j = 8 0.123 3.546 1.211 –2.277 –3.149 

Output nodes 
Weight from node j in the hidden layer to node k in the output layer wki 

Output layer threshold (θ k) 
j = 5 j = 6 j = 7 j = 8 

k = 9 –6.172 –1.819 –0.916 3.820 –0.113 
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hidden nodes can be re-written as follows： 

cf

5 6 7 8
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8  Summary and conclusions 

 

This paper presents a new and unique model to 

predict the performance of rolling dynamic 

compaction (RDC) based on the artificial intelligence 

technique known as artificial neural networks (ANNs). 

The model is developed using a database consisting of 

cone penetration test (CPT) results obtained from 

several ground improvement projects which employed 

the 4-sided，8 tonne“impact roller”. The model   

utilizes 4 input variables，including depth (m)，cone tip 

resistance prior to compaction (MPa)，sleeve friction 

prior to compaction (kPa) and the number of roller 

passes to obtain the cone tip resistance after 

compaction (MPa)，as the sole output. 

The resulting optimal ANN model yields 

relatively accurate predictions with a coefficient of 

correlation (R) of 0.86 and a root mean square error 

(RMSE) of 4.16 MPa，when validated against a set of 

unseen data. The performance of the optimal ANN 

model has been further verified by introducing a series 

of complete and unseen CPT soundings. The resulting 

model predictions are in very good agreement with the 

actual CPT records. The robustness of the optimal 

model is further investigated by conducting a 

parametric study and it is observed that the predicted 

model outputs agree well with the underlying physical 

behavior of the system. It is concluded that the 

selected optimal network is robust and reliable for 

values of initial cone resistance (
ci
q ) less than or equal 

to 10 MPa. However，the model is not well calibrated 

for the higher values of 
ci
q due to the paucity of such 

data in the existing CPT database. However， the 

applicability and the accuracy of the developed models 

can be further enhanced by incorporating more data 

from additional RDC-related projects that may become 

available in the future. As such，it is desirable to 

include a dataset where the input parameters span a 

wider range than in the existing dataset. Nevertheless，

in order to disseminate the optimal model and to 

facilitate its use in practice，it is expressed as a series 

of tractable equations which can be incorporated into a 

spreadsheet or calculated by hand. As with all ANN 

models，they perform best when interpolating within 

the data ranges used in the model′s development. 

These are given in the body of the paper. The model is 

intended to provide initial predictions for planning 

purposes and not to replace field trials，which will 

yield more accurate and site-specific conclusions.  
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