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Rolling dynamic compaction (RDC), which employs non-circular module towed behind a tractor, is an
innovative soil compaction method that has proven to be successful in many ground improvement ap-
plications. RDC involves repeatedly delivering high-energy impact blows onto the ground surface, which
improves soil density and thus soil strength and stiffness. However, there exists a lack of methods to
predict the effectiveness of RDC in different ground conditions, which has become a major obstacle to its
adoption. For this, in this context, a prediction model is developed based on linear genetic programming
(LGP), which is one of the common approaches in application of artificial intelligence for nonlinear
forecasting. The model is based on in situ density-related data in terms of dynamic cone penetrometer
(DCP) results obtained from several projects that have employed the 4-sided, 8-t impact roller (BH-1300).
It is shown that the model is accurate and reliable over a range of soil types. Furthermore, a series of
parametric studies confirms its robustness in generalizing data. In addition, the results of the compar-
ative study indicate that the optimal LGP model has a better predictive performance than the existing
artificial neural network (ANN) model developed earlier by the authors.

© 2019 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Rapid urban and industrial growth has created a demand for
construction on ground which has previously been considered
unsuitable, such as collapsible and loose natural soils, former
landfills, fill from mine workings and sites with prior uncontrolled
filling. Rolling dynamic compaction (RDC) has found to be useful to
improve such problematic soils and is now widely used globally.
This technique involves towing a heavy (6—12 t), non-circular (3-,
4- and 5-sided) module behind a tractor, where the module rotates
about its corners as it is drawn forward (Avalle, 2004). As a result, a
series of high-energy impacts is imposed repeatedly onto the
ground surface (Pinard, 1999) by which the soil is densified into a
state of lower void ratio due to pore air expulsion. The high-energy
waves generated by the impact blows penetrate deeply into the
ground resulting in a greater influence depth, which is more than
1 m beneath the ground surface and sometimes in excess of 3 m in
some soils (Avalle and Carter, 2005). This deep compaction effect is
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beneficial compared to conventional static and vibratory compac-
tion (Clegg and Berrangé, 1971; Clifford, 1976; Avalle and Carter,
2005; Jaksa et al., 2012), where the influence depth is limited to
depths less than 0.5 m below the ground surface. In addition, it is
efficient to employ RDC in large and open sites as the modules are
drawn at the comparatively higher optimal speed of 9—12 km/h,
whereas the traditional compaction rollers travel at 4 km/h speed
(Pinard, 1999). Furthermore, RDC can also treat thicker lifts, i.e. in
excess of 0.5 m whilst, with the conventional compaction, the lift
thickness is usually limited between 0.2 m and 0.5 m (Avalle, 2006).
Thus, the improved ground compaction capability of RDC, espe-
cially with respect to a greater influence depth and a higher speed
of compaction, results in increased productivity. In addition, the
prudent use of RDC can also provide significant cost savings,
reduced infrastructure costs and environmental benefits. Given
these significant advantages over the traditional approaches of soil
compaction, RDC applications are found to be successful in a variety
of fields, including earthworks and pavement construction (Avalle,
2006), agricultural sector (Avalle, 2004), and mining applications
(Scott and Jaksa, 2012).

Estimation of the influence depth of RDC is of prime importance,
in particular, if multi-layered soil profiles are encountered.
Although RDC has been studied experimentally through a number
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of field-based case studies, until recently as a result of work un-
dertaken by the authors, there has been no rational means available
for the prior estimation of the effectiveness of RDC in different
ground conditions. Subsequently, current practice associated with
estimating site-specific operational parameters relies heavily on
the judgment of geotechnical engineering practitioners. In addi-
tion, field trials are often carried out, where a testing pad is ar-
ranged, which is representative of a large-scale operation of the
compaction procedure. The efficacy of RDC is basically verified
using a combination of surface settlement surveys, soil sampling
and in situ tests, such as penetrometer, field density and
geophysical testing, that are undertaken after different numbers of
module passes. As such, field trials are valuable for ascertaining the
relevant operational parameters, especially the optimal number of
impact roller passes needed to achieve the required percentage of
maximum dry density, but it incurs a non-trivial cost and time
commitment.

Until recently, as described below, no method was available to
predict, a priori, the density improvement at a specified depth
below ground due to RDC, based on subsurface conditions and the
number of roller passes. With this in mind, this research in-
vestigates the feasibility of using linear genetic programming (LGP),
which is one of the well-known machine learning techniques
available to develop predictive models. Similar to artificial neural
networks (ANNs), genetic programming (GP) can be considered as
another alternative approach to conventional methods, due to its
ability to approximate any linear/nonlinear relationship among a
set of observed input and output data in the absence of prior
knowledge of the underlying mechanisms of the system. Recently,
the authors suggested an approach based on ANNs (Ranasinghe
et al., 2017a, 2019), in which two distinct models have been
developed based on in situ soil test data in terms of cone pene-
tration test (CPT) and dynamic cone penetrometer (DCP) test re-
sults obtained from projects that have employed the Broons 4-
sided ‘impact roller’. Whilst the developed ANN models were
demonstrated to be accurate and reliable, it has been suggested in
the literature (Rezania and Javadi, 2007; Alavi and Gandomi, 2012;
Alavi and Sadrossadat, 2016) that evolutionary computation, such
as LGP, offers a number of advantages over ANNs and thus, may
yield improved predictive capability with respect to RDC. Further-
more, many of the applications related to geotechnical engineering,
including the recent study by the authors in relation to RDC, where
LGP models were developed using CPT data (Ranasinghe et al,,
2017b), have suggested that LGP outperforms ANNs, in addition
to other benefits.

The developed LGP-based model in this study utilizes a reli-
able database consisting of DCP results obtained from several
ground improvement projects, associated with the Broons 4-
sided, 8-t ‘impact roller’. Since this dataset has also been
employed previously in the ANN model developed recently by
the authors (Ranasinghe et al., 2017a), a comparative study is
conducted between the results obtained herein and those ob-
tained from the existing ANN model. In addition, a parametric
study is conducted, by which the reliability of the developed
model is further verified.

2. Linear genetic programming (LGP)

GP is an evolutionary computational approach of nonlinear
modeling, where the computer programs evolve automatically to
optimize a solution towards a pre-defined goal. This machine
learning technique aligns with the theory of Darwinian natural
selection and was first introduced by Koza (1992). Generally, GP is
considered as an extension to genetic algorithms (GAs), in which
most of the genetic operators used in GAs are also applicable, albeit

with slight modifications (Alavi et al., 2013). However, the main
differences between GP and GAs lie in the representation of the
solution. The GAs are often recognized by individuals represented
by fixed-length binary strings (Holland, 1975) and the solutions
require post-processing prior to execution. In contrast, GP repre-
sents the individuals as computer programs whose size, shape and
complexity are dynamically varied during evolution and are usually
executable without post-processing (Koza, 1992). Moreover, GAs
are generally used for parameter optimization, where the best
values are evolved for a pre-defined set of model parameters, whilst
GP, on the other hand, evolves the program structure of the
approximation model together with the values of its parameter
setting (Torres et al., 2009; Mousavi et al., 2011; Alavi et al., 2013).
However, as with GAs, GP performs a multi-directional simulta-
neous search for an optimal solution from a pool of many potential
solutions, collectively known as a ‘population’. The fact that these
methods operate from a population enables them to escape local
minima in the error surface and is thus able to find optimal or near
optimal solutions (Selle and Muttil, 2011).

In the traditional GP approach, which is also referred to as tree-
based genetic programming (TGP), the computer programs (in-
dividuals) have a symbolic representation of a rooted tree-like
structure with ordered branches in which the root node and in-
ternal nodes are comprised of functions whereas, external nodes
(leaves) contain the input values or constants (Koza, 1992). Thus,
they are often expressed in a functional programming language
like LISP (Koza, 1992). However, in addition to the traditional TGP,
there are several other distinguished subsets of GP that have a
different form of program structure representation, i.e. LGP and
graph-based GP (Banzhaf et al., 1998; Poli et al., 2007; Alavi et al.,
2013). In the present study, emphasis is placed on LGP. In this
particular variant, the evolved programs are represented by a
sequence of instructions, either from an imperative language (e.g.
C, C++ or Java) (Brameier and Banzhaf, 2001, 2007) or from a
machine language (Nordin, 1994). In contrast to the rigidly
determined tree-structured data flow in TGP, LGP has a more
general, specifically-directed graphical structure at the functional
level resulting from multiple usage of register contents (Brameier
and Banzhaf, 2007; Alavi et al.,, 2013; Gandomi et al., 2014).
Moreover, the existence of noneffective code segments, which are
also referred to as introns in LGP, makes them different from their
traditional tree-based counterparts. As such, these structurally
noneffective codes denote the instructions, which manipulate the
registers that have no influence on the output calculation
(Gandomi et al., 2010). Although these noneffective code seg-
ments coexist with the effective code, they are not connected to
the data flow unlike in TGP, where the structural introns do not
exist because all the program components have a connection with
the root node (Brameier and Banzhaf, 2007). However, because of
the imperative program structure in LGP, the structural introns
can be detected efficiently and completely (Francone and
Deschaine, 2004; Alavi et al., 2013).

There is a special variant of LGP, named automatic induction of
machine code by genetic programming (AIMGP), where the in-
dividuals are represented and manipulated as native binary ma-
chine code (Nordin, 1994; Banzhaf et al., 1998). During fitness
evaluation in GP, the programs are executed multiple times or at
least once, which is considered to be the most time-critical step in
evolutionary algorithms (Brameier and Banzhaf, 2007). Program
execution refers to as the interpretation of internal program
representation. However, in AIMGP, the individuals are directly
executable by the processor, which avoids the use of an expensive
interpreter (Francone and Deschaine, 2004; Brameier and
Banzhaf, 2007). As a result, AIMGP is found to be significantly
faster and more memory efficient when compared with other
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interpreting GP variants (Nordin, 1994; Brameier and Banzhaf,
2001). Given these advantages, AIMGP is also utilized in this
study.

In general, the basic steps of the LGP evolutionary algorithm
(Brameier and Banzhaf, 2007) can be summarized as follows:

(1) Initializing a population of randomly generated programs
and evaluating their fitness;

(2) Running a tournament and selecting the winning programs;

(3) Transforming the winner programs into offsprings probabi-
listically subjected to genetic operations, i.e. crossover and
mutation;

(4) Replacing the tournament losing programs with the
offspring programs; and

(5) Repeating Steps 2—4 until the termination or convergence
criteria are satisfied.

3. Methodology

The details of the database used to develop the LGP-based
model, as well as the methodology adopted for model develop-
ment, are discussed separately below.

3.1. Database, data analysis and data pre-processing

This study utilizes a comprehensive database that comprises in
situ strength data in the form of DCP test results. The DCP (ASTM
D6951-03, 2003) is one of the most commonly used in situ test
methods, which provides an indication of soil strength in terms of
rate of penetration (blow/mm) (Mousavi et al., 2018). The data-
base contains the results of DCP tests with respect to the number
of roller passes obtained from various sites and soil types. The
relevant data have been extracted from the results of several field
trials undertaken using the 4-sided, 8-t ‘impact roller’ (BH-1300),
which is operated by the Australian company Broons (SA) Hire. In
total, the database contains 2048 DCP records from 12 separate
projects.

Given the problem at hand, the model is established to predict
the degree of soil improvement of the ground with respect to the
number of roller passes. Thus, the single model output should
necessarily define the ground density at a particular location
resulting from several passes of the impact roller. However, in
selecting the model input variables, it is essential to incorporate
the factors that are most influential on the model output vari-
able. There are several fundamental parameters that significantly
affect soil compaction: the geotechnical properties at the time of
compaction, such as ground density, moisture content, and soil
type; and the amount of energy imparted to the ground during
compaction. Consequently, the model input variables are defined
so that they effectively address each of the aforementioned fac-
tors that influence soil behavior upon the application of RDC.

Whilst the standard DCP procedure involves recording the
number of blows for each 50 mm of penetration, a compromise
must be achieved between model parsimony and predictive accu-
racy. In this study, the average DCP blow count per 300 mm is used
to indicate the average density with depth. Therefore, the initial
density at the point of interest is selected to be described by the
input variable of initial DCP count (blow/300 mm), whilst the single
output variable is described by the final DCP count (blow/300 mm).
In addition, the amount of energy imparted to the ground during
RDC is described in terms of the number of roller passes so that two
input variables are specified: the initial and the final numbers of
roller passes corresponding to the initial and final densities at a
particular location, respectively. The average depth (m) is

established as another input variable, whilst the soil type is also
adopted. The soil type is defined in a generalized form at each DCP
location by implementing a primary (dominant) and a secondary
soil type. With the availability of project data in the DCP database,
four distinct soil types are characterized as: (i) sand-clay, (ii) clay—
silt, (iii) sand-none, and (iv) sand-gravel. However, it is worth
noting that soil moisture content is not included as a model input
due to the paucity of data, as it is usually not measured routinely in
practice in ground improvement projects. However, the moisture
content is considered to be described implicitly by the DCP data,
given that penetrometer test results, including those from the DCP,
are affected by soil moisture. The input and output variables
involved in the LGP-based model development and their statistics
are presented in Table 1, with Fig. 1 summarizing the histograms of
the model input and output variables.

Prior to model development, the entire dataset is subdivided
into two subsets, i.e. calibration and validation data. The calibration
dataset is further subdivided into training and testing sets, by
which the models are respectively trained and the best program is
selected by testing. The testing set provides an estimate of the
prediction error for a set of unseen data during the model cali-
bration phase and this information is useful when selecting the
optimal program model. The validation dataset is not used during
model development, and thus, it is optional to provide this separate
and additional dataset. However, it is with the validation dataset
that the selected optimal model is assessed for its generalization
capabilities. Since the optimal model is evaluated with respect to an
unseen dataset, the results are significant for the evaluation of
model performance.

In order to allow a fair comparison between the results ob-
tained from the proposed LGP-based model and those from the
existing ANN model (Ranasinghe et al.,, 2017a), the same three
data subsets are employed in the present study as was undertaken
by the authors in the earlier ANN model study. In summary, 80% of
the data are used for training and testing (1310 and 319 records,
respectively), whilst the remaining 20% of the data (419 records)
are used for model validation. However, it is important to maintain
similar statistics between these three subsets, which ensures that
they belong to the same population, which is the ideal form of
data division. As can be observed from the summary statistics in
Table 2, the subsets effectively represent the same population by
the similar values of mean, standard deviation, minimum,
maximum and range.

3.2. LGP-based modeling approach

In this study, the commercially available software Discipulus
version 5.2 (Francone, 2010) is used for the LGP-based model
development. It is a supervised learning system, which operates on
the basis of the AIMGP platform. The selection of control parame-
ters is considered to be vital in LGP modeling, since it has a direct
impact on the model’s generalization capacity. Therefore, in this
study, the control parameters are defined in accordance with the
suggested values from similar LGP applications (Gandomi et al.,
2010, 2014; Rashed et al., 2012; Alavi et al., 2013; Babanajad
et al., 2013; Alavi and Sadrossadat, 2016) and also from observa-
tions obtained from preliminary runs. As presented in Table 3,
several different parameter settings, including population size,
probabilities of genetic operations and program size, are investi-
gated, whilst most of the other minor parameters are defined by the
software default values.

In this study, several LGP projects are carried out including
only the arithmetic functions (+, —, x, /). Furthermore, in order
to permit the evolution of highly nonlinear models, inclusion of
mathematical functions (sin, cos, exponential, absolute and
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Table 1
Descriptive statistics of the dataset used in LGP model development.

Data type Variable Statistical parameters
Mean Standard deviation Minimum Maximum Skewness Kurtosis
Input Average depth, D (m) 0.82 0.52 0.15 1.95 0.33 -0.74
Initial number of roller passes 7.89 10.65 0 50 1.63 2.06
Initial DCP count (blow/300 mm) 16.41 10.69 3 65 1.51 2.64
Final number of roller passes 21.13 16.25 2 60 1.01 —0.03
Output Final DCP count (blow/300 mm) 18.14 11.25 2 84 142 2.94
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Fig. 1. Histograms of the model variables used in LGP model development: (a) soil type, (b) average depth, (c) initial number of roller passes, (d) initial DCP count, (e) final number

of roller passes, and (f) final DCP count.

square root), in addition to basic arithmetic operators, is also
considered. This study applies the mean square error (MSE) as
the fitness measure, which can be defined as

n 2
MSE 221:1(’1%&) (1)

where h; and t; are the actual and the model predicted output
values for the ith sample, respectively; and n denotes the number of
samples.

The population size parameter is regulated at several different
levels, i.e. 500, 1000, 2000, 2500 and 5000. However, it has been
found that the evolutionary process converges faster in semi-
isolated sub-populations, named ‘demes’ than in a single popula-
tion of equal size (Brameier and Banzhaf, 2007; Alavi and
Sadrossadat, 2016). Thus, the parameter that determines the
number of demes into which the population is subdivided is set at
20 (Alavi and Gandomi, 2012; Alavi and Sadrossadat, 2016). As
discussed earlier, in LGP, essentially two genetic operations,
crossover and mutation, are used. In this study, the frequencies of
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Table 2
Statistical properties of the data subsets.

Data type Model variable Data subset Statistical parameters
Mean Standard deviation Minimum Maximum Range
Input Average depth (m) Training 0.81 0.51 0.15 1.95 1.8
Testing 0.82 0.51 0.15 1.95 1.8
Validation 0.83 0.52 0.15 1.95 1.8
Initial number of roller passes Training 7.69 10.61 0 50 50
Testing 7.65 10.44 0 50 50
Validation 8.71 10.93 0 50 50
Initial DCP count (blow/300 mm) Training 16.57 10.86 3 65 62
Testing 15.88 10.64 3 59 56
Validation 16.31 10.2 3 61 58
Final number of roller passes Training 21.14 16.25 2 60 58
Testing 21.16 16.49 2 60 58
Validation 21.08 16.11 2 60 58
Output Final DCP count (blow/300 mm) Training 18.3 11.29 2 84 82
Testing 17.8 10.81 2 73 71
Validation 17.93 11.47 3 75 72
Table 3 existing ANN model. Moreover, the details of parametric study and

Parameter setting used in LGP modeling.

Parameter Settings

Function set +, —, X, [, absolute, square root,
trigonometric (sin, cos), exponential
500, 1000, 2000, 5000

80 bytes

128, 256 bytes

50%, 95%

Population size

Initial program size
Maximum program size
Mutation frequency

Block mutation frequency 40%
Instruction mutation frequency 30%
Instruction data mutation frequency 30%
Crossover frequency 50%, 95%

Homologous crossover frequency 95%

these genetic operations are considered at two levels of 50% and
95%. These frequencies are the overall probabilities of genetic op-
erations applied to the tournament winning programs (Koza, 1992).
It has been suggested in the literature that the success of the LGP
algorithm usually rises with the increasing program size parameter
(Rashed et al., 2012; Alavi et al., 2013). However, at the same time,
as the complexity of the evolved programs increases, the conver-
gence speed decreases. Considering these trade-offs, the initial
program size is set to 80 bytes, whilst the maximum program size is
tested at two optimal levels, i.e. 128 and 256 bytes.

Likewise, in this study, many numbers of LGP projects are
carried out, where all the above described combinations of pa-
rameters are tested. Each LGP project is made up of a series of
runs, which progressively increases in length during the course
of a project. Each run is allowed to evolve in generations, while
MSE is being monitored continuously. However, the projects are
terminated manually, given a reasonable time (ranging from a
few minutes to more than 20 h on a standard PC) to evolve into
an accurate model and when no further improvement in model
performance is likely to occur. Finally, the resulting LGP models
are evaluated using several performance measures with respect
to each of the three data subsets and compared to select the
optimal program. The criteria used to evaluate the performance
of the evolved program models include the coefficient of corre-
lation (R), root mean square error (RMSE) and mean absolute
error (MAE).

4. Results and discussion

The following sections summarize the results of the optimal LGP
model along with a comparison with those obtained from the

sensitivity analysis are also discussed. In addition, the selected
optimal LGP model for predicting the final DCP (blow/300 mm) is
presented in computing code in the C language in Appendix A.

4.1. Performance analysis

The performance statistics in terms of R, RMSE and MAE asso-
ciated with the selected optimal LGP-based model, with respect to
the three data subsets (training, testing and validation), are pre-
sented in Table 4. The selected model’s performance and reliability
are assessed based on the criteria suggested by Smith (1986), as
presented in the following.

Given that the error values (e.g. RMSE and MAE) are minimum,
when:

(1) |R| > 0.8, there exists a strong correlation;

(2) 0.2 < |R| < 0.8, there exists a correlation; and

(3) IR] < 0.2, there exists a weak correlation between the two
variables.

Accordingly, it can be concluded that there exists a strong cor-
relation between the model’s predicted results and the measured
data since R > 0.8 and measures of error (i.e. RMSE and MAE) are
relatively small. It is also evident that the above criteria are valid
and not limited to the data subsets that were used during the model
calibration phase (i.e. training and testing sets), but also the new
unseen data in the validation set. This implies that the model
predicts the target values accurately and also incorporates a
generalization capability.

Fig. 2 presents the scatter plots of the final DCP count predicted
from the LGP model and compared against the measured values in
the testing and validation sets. It can be observed that the results
are scattered around the solid line that indicates the line of equality
and the spread exhibits classic heteroscedasticity. The spread is
confined to two standard error (SE) envelops of 0.5—2 times the

Table 4
Performance statistics of the selected optimal LGP model.

Data subset Performance criteria

R RMSE (blow/300 mm) MAE (blow/300 mm)
Training 0.84 6.22 418
Testing 0.87 5.35 3.7
Validation 0.81 6.8 4.74
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Fig. 2. Measured versus LGP predicted final DCP counts with respect to (a) testing dataset and (b) validation dataset.

measured values. These SE bands can be considered reasonable for
such a model that yields predictions based on DCP results given the
uncertainties associated with the dataset and the method itself.

In order to investigate further the model’s performance, the LGP
predictions and the measured data, with respect to the validation
dataset, are assessed subject to several additional measures, as
suggested in the literature. Table 5 presents the validation criteria
along with the results obtained from the LGP model. It is evident
that satisfactory results are obtained from each of the criteria. This
provides further evidence that the optimal LGP model yields ac-
curate predictions.

A comparative study is conducted between the results obtained
from the LGP-based model and those obtained from the ANN-based
model recently developed by the authors (Ranasinghe et al., 2017a).
The performance indices in terms of R, RMSE and MAE are again
adopted and the results are presented in Table 6. As can be seen, the
results for both models are very promising, as indicated by the
strong coefficient of correlation (R > 0.8), along with the relatively
low error values with respect to all three data subsets. However, it
is also evident that the LGP predictions are slightly superior to
those from the ANN model.

Further to the above assessment, the predictions of final DCP
count from the LGP and ANN models are compared graphically with
the measured final DCP count values, with respect to the testing
and validation datasets, and the resulting histograms are shown in
Fig. 3. The x-axis indicates the ratio of the predicted data to
measured values, with ideal performance being indicted by a ratio

Table 6
Comparison of the performance statistics of LGP and ANN models.

Data subset

Performance criteria

R RMSE (blow/300 mm) MAE (blow/300 mm)

LGP ANN LGP ANN LGP ANN
Training 084 085 6.22 6.45 4.18 4.88
Testing 087 083 535 6.52 3.7 4.74
Validation 081 079 6.8 7.54 4.74 5.59

of unity. As can be seen, both the LGP and ANN model predictions
from the testing and validation data suggest that they have strong
predictive abilities and generalization performance, as given by the
high frequencies around the ratio of 1. In addition, it can be clearly
seen that the LGP model slightly outperforms the ANN model.

4.2. Parametric study

Although the LGP model yields satisfactory performance in terms
of the measures as discussed above, it is essential to investigate the
model’s behavior in a parametric study to further test its robustness.
To this end, the LGP model is implemented to predict the output for a
synthetic input dataset which lies within the range that model is
trained against, in order to examine whether the results conform to
the known physical behavior of the system. Each of the model input
variables is varied successively, while maintaining all other input

Table 5
Additional performance measures of the LGP model for the validation dataset.
Item Formula Source Condition Result
1 K = S (hity) Golbraikh and Tropsha (2002) 085 <k <1.15 0.92
SEh?
2 S (hity) Golbraikh and Tropsha (2002) 085 <k <1.15 0.98
K = 17} 121
ity
3 St — hp)Z Roy and Roy (2008) Should be close to 1 0.97
R} = 1- =177 where h) = ki
> (ti— &)
4 n C_40\2 Roy and Roy (2008) Should be close to 1 1
R =1- %, where t) = k'h;
it (hi = hy)
5 R2 _ Ré Golbraikh and Tropsha (2002) m< 0.1 -0.49
m=—7
R? —R¢
6 n = 0 Golbraikh and Tropsha (2002) n<0.1 —0.54

R2
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Fig. 3. Frequency histograms for model predicted and measured final DCP counts with respect to (a) testing data and (b) validation data.

variables at a pre-defined value. In this case, the model output of
final DCP count (blow/300 mm), which expresses the post
compaction condition, is examined given the different initial con-
ditions as described by initial DCP count (i.e. 5, 10, 15, 20 blow/
300 mm), soil types (i.e. sand-clay, clay—silt, sand-none and sand-
gravel) and final numbers of roller passes (i.e. 5, 10, 15, 20, 30, 40
passes), while the initial number of roller passes is set at zero.

The results of the parametric study are shown in Fig. 4 and
indicate that the final DCP count continuously increases when the
final number of roller passes is increased for a given initial DCP
value in each soil type. This parametric behavior demonstrates that
the ground is significantly improved with the application of RDC, as
evidenced by the increasing DCP count, which is consistent with
the behavior observed in field trials. Therefore, it can be concluded
that the optimal LGP model developed in this study is robust, ac-
curate and reliable within the specified range of the input variables
(i.e. data ranges in training set).

Final DCP count (blow/300 mm)

35

0.3 4
0.6 4
0.9 4
1.2

Average depth (m)

1.5 A
1.8 4
21

(c)

Initial DCP =5 (blow/300 mm)
Initial DCP = 15 (blow/300 mm)

@ Final number of roller passes = 5

& Final number of roller passes = 10
= Final number of roller passes =20 M Final number of roller passes = 30

4.3. Sensitivity analysis

It is informative to conduct a sensitivity analysis to evaluate the
contribution of each input variable in predicting the target output.
This is a common approach and has been utilized in a number of
applications (Gandomi et al., 2010; Rashed et al., 2012; Alavi et al,,
2013; Alavi and Sadrossadat, 2016). At the end of each LGP project,
the software Discipulus calculates the frequencies, and the average
and maximum impacts of each of the input variables, with refer-
ence to the 30 best selected programs (Francone, 2010). The fre-
quency indicates the proportion of times (expressed in percentage)
that each input variable appears, in the 30 best evolved programs,
in a way that contributes to the fitness of the programs that contain
them. In this particular project, a frequency of 100% was obtained
for each of the specified input variables (i.e. soil type, average
depth, initial number of roller passes, initial DCP count and final
number of roller passes). In addition, the average and maximum

Final DCP count (blow/300 mm)

Average depth

35

0.3 4
0.6 A
0.9 A
1.2 A

Average depth (m)

1.5 A
1.8 A
21

(d)

Initial DCP = 10 (blow/300 mm)
Initial DCP = 20 (blow/300 mm)
@ Final number of roller passes = 15
A Final number of roller passes = 40

Fig. 4. Variation of final DCP count with respect to initial DCP count and final number of roller passes in (a) sand-clay, (b) clay—silt, (c) sand-none, and (d) sand-gravel.
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Fig. 5. Contribution of the input variables to optimal LGP model predictions.

impact values with respect to each of the input variables, which
describes the average and maximum effects that result from the
removal of each corresponding input variable from the 30 best
programs, are also calculated and the resulting histogram is pre-
sented in Fig. 5. It is again evident that all the input variables are
significant, with respect to the predictions of the final DCP count,
and the initial DCP count and the final number of roller passes are
the most significant.

A similar sensitivity analysis has been conducted during the
ANN modeling phase, as described by Ranasinghe et al. (2017a).
However, in relation to the ANN models, the input variables of soil
type and initial DCP count were found to be the most important,
whilst the relative importance of the input variables — average
depth, initial number of roller passes and final number of roller
passes — was reduced in turn. Although the relative importance of
each variable is inconsistent when comparing the ANN and LGP
models, it is evident that the selected input variables have a
substantial effect on the model predictions.

5. Summary and conclusions

This paper presents a new approach based on GP for the pre-
dictions of the efficacy of RDC, which is considered to be an alter-
native to conventional soil compaction technology. A particular
variant of GP, i.e. LGP, is used to develop the model. A compre-
hensive database consisting of in situ density data in terms of DCP
test results is utilized, associated with various ground improve-
ment project records involving the Broons’ 4-sided, 8-t ‘impact
roller’. In model development, five input variables, i.e. soil type,
average depth (m), initial number of roller passes, initial DCP count
(blow/300 mm) and the final number of roller passes, are consid-
ered to be the most influential with respect to predictions of the
final DCP count (blow/300 mm), which is the sole output of the
predictive models.

The selected optimal LGP model is found to yield accurate es-
timates of the final DCP count, with a coefficient of correlation (R) of
0.81, a RMSE of 6.8 (blow/300 mm), and an MAE of 4.74 (blow/
300 mm), when assessed against unseen data in the validation set.
These outcomes confirm that the LGP model yields accurate pre-
dictions and demonstrates very good generalization capability.
Moreover, when the selected optimal LGP model results are
compared with those obtained from the ANN model developed by
the authors in a previous study, the LGP model demonstrates su-
perior performance. In addition, a parametric study has been car-
ried out for further verification of the LGP model and it is evident
that the model predictions are accurate and robust. In addition, a
sensitivity analysis has been conducted that examines the

contribution of each input variable to the final model predictions.
The results indicate that the input variables utilized in this study
are significant with respect to the predictions of the final DCP count
resulting from the application of RDC. The optimal LGP program is
included in a C code in order to disseminate the model and facilitate
its use in practice.

The LGP model presented in this study is expected to provide
initial estimates of the effectiveness of RDC in different ground
conditions, which are likely to be of particular value in the pre-
design phase. It is, nevertheless, recommended that the model
predictions be validated on site using a traditional field trial, as
the data upon which the model is based incorporate a limited
number of soil types. Moreover, this study has focused solely on
the 4-sided, 8-t impact roller, and as such, the developed pre-
dictive models are valid only for that specific RDC module
(BH-1300).
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