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Rolling dynamic compaction (RDC) is a soil compaction method that involves impacting the ground with a non-circular
roller. This technique is currently in widespread use internationally and has proven to be suitable for many
compaction applications, with improved capabilities over traditional compaction equipment. However, there is still a
lack of knowledge about a priori estimation of the effectiveness of RDC on different soil profiles. To this end, the aim
of this paper is to develop a reliable predictive tool based on a machine-learning approach: linear genetic
programming (LGP). The models are developed from a database of cone penetration test (CPT)-based case histories. It
is shown that the developed LGP-based correlations yield accurate predictions for unseen data and, in addition, that
the results of a parametric study demonstrate its generalisation capabilities. Furthermore, the selected optimal
LGP-based model is found to yield superior performance when compared with an artificial neural network model
recently developed by the authors. It is concluded that the LGP-based model developed in this study is capable of
providing reliable predictions of the effectiveness of RDC under various ground conditions.

Notation
D depth of measurement
fsi sleeve friction prior to compaction
P number of roller passes
qcf cone tip resistance after compaction
qci cone tip resistance prior to compaction

1. Introduction
Rolling dynamic compaction (RDC) is now a well-established
method of ground improvement whereby soil densification is
achieved by means of high-energy impact blows. RDC
employs heavy (6–12 t), non-circular modules (three-, four-
and five-sided), which rotate about their corners as they are
drawn forward towed behind a tractor (Avalle, 2004b).
Thereby, a combination of potential and kinetic energy is
derived from the impact mechanism, which provides a series of
impact blows as the roller traverses the ground. Consequently,
the soil beneath the surface is densified into a state of lower
void ratio by expelling the pore air and fluid. However, the
major benefit of RDC is its capability of influencing the

ground to a greater depth, when compared with conventional
static and vibratory compaction, which is more than 1 m
beneath the ground surface and sometimes as deep as 3 m in
some soils (Avalle and Carter, 2005; Clegg and Berrangé,
1971; Clifford, 1976, 1978; Jaksa et al., 2012). In addition to
the greater depth of compaction, RDC is capable of achieving
the required density in thicker lifts, which are generally in
excess of 500 mm, as compared with traditional layer thick-
nesses of 200–500 mm (Avalle, 2004b, 2006). Moreover, RDC
can operate with larger particle sizes and the surface corruga-
tions produced as a result of its operation provide a measure
of interlocking between the adjacent soil layers, which helps to
overcome lateral shearing effects. The economics of the use of
RDC has also been found to be favourable due to its speed of
operation – that is, 9–12 km/h, which is substantially greater
than the traditional vibratory roller, which travels at �4 km/h
(Pinard, 1999). These inherent characteristics of RDC make it
very effective for many civil, mining and agricultural appli-
cations, including pavement rehabilitation; in situ densification
of existing fills, such as on brownfield sites and landfills; sub-
grade proof-rolling (Avalle, 2004a); construction of tailing
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dams at mine sites (Avalle, 2006); rock demolition in open cut
mine waste tips (Scott and Jaksa, 2012); and improvements of
existing water storages, channels and embankments (Avalle,
2004b).

To date, RDC has been studied experimentally through a
number of field-based case studies. Some of the recent field-
based studies that have quantified the effectiveness of the four-
sided impact roller are reported by Avalle (2007), Avalle and
Carter (2005), Avalle et al. (2009), Jaksa et al. (2012) and
Scott and Jaksa (2014). However, comparatively, there has
been very little research directed to date towards the develop-
ment of a theoretical model for evaluating the effectiveness of
RDC and thus, limited published information is available in
this regard. Recently, Kuo et al. (2013) investigated the influ-
ence zone of the impact roller by means of the finite-element
(FE) method. In so doing, the FE model was validated against
field data obtained by Jaksa et al. (2012) and it was shown
that RDC was most effective for depths of 0·8–3 m below the
surface, where the soil density increases with greater numbers
of roller passes. Additionally, in a preliminary parametric
study, the authors showed that the most significant factors
were soil cohesion, Poisson ratio and shear modulus, as well
as the width and mass of the RDC module. However, these
field-based studies and the numerical simulations of RDC
recorded in the literature to date have limited applicability in
practice, especially due to the site-specific nature of their
results.

However, until recently, no rational means existed for obtaining
an a priori estimation of the degree of densification or the
extent of the influence of depth by RDC under different
ground conditions; this is now available as a result of work
undertaken by the authors, which is discussed below. Indeed,
the development of such a reliable theoretical model for prior
estimation of the effectiveness of RDC is complex due to the
heterogeneous nature of soil and of the various site-specific
factors that can potentially affect the improvement process.
Consequently, the performance design and application of
RDC currently relies heavily on the geotechnical engineer’s
experience and judgement. Field trials are often carried out on
site to ascertain the operational parameters, especially the
optimal number of impact roller passes required to achieve the
required percentage of maximum dry density.

However, to address this problem, recent studies conducted by
the authors in relation to RDC have proposed models by means
of the artificial intelligence (AI) technique known as artificial
neural networks (ANNs) (Ranasinghe, 2017; Ranasinghe et al.,
2016). Two distinct ANN models have been developed based on
the cone penetration test (CPT) (Ranasinghe, 2017), and the
dynamic CPT (Ranasinghe et al., 2016). Data and results are
obtained from previous ground improvement projects associated
with the Broons four-sided ‘impact roller’. Except for a few
restrictions imposed on model utilisation, they have been shown

to be successful in providing reliable predictions of the effective-
ness of RDC in various ground conditions. Despite the fact that
ANNs provide acceptable performance in many geotechnical
engineering applications, they suffer from a few shortcomings.
Essentially, ANNs require the network structure and the
parameters to be recognised in advance, which usually entails
the implementation of somewhat ad-hoc, trial-and-error
methods. Moreover, a common criticism levelled at ANNs is
their lack of transparency, in that they often fail to explain the
underlying physical processes associated with the phenomenon
under investigation – in this case, compaction.

This paper investigates the applicability of a relatively new,
machine-learning technique called genetic programming (GP)
that is reported to overcome many of the shortcomings associ-
ated with ANNs and other conventional modelling approaches
for the prediction of the effectiveness of RDC. The GP models
are developed using a reliable dataset of CPT results that has
also been utilised previously for ANN model development by
the authors (Ranasinghe, 2017). A comparative study is con-
ducted where the GP- and ANN-based models are compared
in terms of a range of performance measures.

2. Genetic programming
Genetic programming (Koza, 1992) is one of the number of
approaches based on evolutionary algorithms (EAs) that
mimic the concept of Darwin’s evolution theory in relation to
optimising a solution to a pre-defined problem. Similarly to
ANNs, GP is part of the AI class of modelling techniques,
which can be considered as an alternative to conventional
methods, such as – for example, statistical and FE modelling –

due to its ability to approximate any linear/non-linear relation-
ship among a set of observed input and output data in the
absence of former knowledge on the underlying mechanisms
of the system.

In GP, the individuals in a population are represented as com-
puter programs of variable size and shape (Koza, 1992) that
are hierarchically composed of a set of functions and terminals
fitted to a particular problem domain. The function set may
consist of arithmetic functions (+, −, �, /), mathematical func-
tions (sin, cos, ln), Boolean logic operators (AND, OR, NOT),
logical expressions (IF or THEN), iterative functions (DO,
CONTINUE, UNTIL) and/or other user-defined functions
(Sette and Boullart, 2001). The terminal set typically com-
prises input variables attached to the problem domain and
pre-specified or randomly generated numeric constants.

2.1 Linear GP
There are several distinct variants of GP, where programs are
represented in different forms. Besides the traditional tree-
based GP (TGP) approach, these can be either a linear or
graphical representation (Banzhaf et al., 1998; Poli et al.,
2007). In linear-based GP variants, there is a clear difference
between the genotype and phenotype of an individual
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(Alavi and Gandomi, 2012). Moreover, the individuals have a
linear string representation, which is decoded and expressed
like non-linear entities (Oltean and Grosan, 2003). In the
recent past, several linear-based variants of GP have been
utilised in civil engineering applications – that is, linear GP
(LGP), multi-expression programming, Cartesian GP, gene-
expression programming and grammatical evolution (Oltean
and Grosan, 2003). However, the emphasis of the present
study is placed on LGP.

The main distinguishing feature of LGP over TGP is that LGP
evolves programs of an imperative language (e.g. C, C++ or
Java) or machine language instead of the standard TGP
expressions in a functional programming language (i.e. Lisp)
(Brameier and Banzhaf, 2001, 2007). Moreover, the data flow
of evolved programs in LGP has a more general register-based
graphical representation at the functional level, compared with
the rigidly determined tree representation of traditional TGP.
A comparison of the typical program structures giving the
same end result, produced by LGP and TGP, is presented in
Figure 1.

As described earlier, the LGP individuals are evolved either
from an imperative programming language (e.g. C, C++ or
Java) (Brameier and Banzhaf, 2001, 2007) or a direct machine
language (Nordin, 1994). The latter variant is also known as
automatic induction of machine code by GP (AIMGP), where
the evolved programs are stored as linear strings of native
binary machine code (Nordin et al., 1999). In contrast, the
individuals in AIMGP are directly executable by the processor
(Francone and Deschaine, 2004). AIMGP is found to be more
memory efficient and significantly faster than other GP var-
iants because there is no need for an interpreter for the evalu-
ation of individuals (Alavi and Gandomi, 2012; Nordin et al.,
1999). As a consequence of these advantages, this study makes
use of AIMGP. In the recent past, AIMGP has also been suc-
cessfully implemented in several applications of LGP in geo-
technical engineering. These include estimation of ultimate
bearing capacity of shallow footings founded on rock (Alavi
and Sadrossadat, 2016), assessment of soil liquefaction (Alavi
and Gandomi, 2012), non-linear modelling of soil deformation

modulus (Rashed et al., 2012) and soil classification
(Heshmati et al., 2008).

2.2 LGP evolutionary algorithm
LGP performs a multi-directional simultaneous search for an
optimal solution from a pool of many potential solutions, col-
lectively known as a ‘population’. The individuals in the popu-
lation compete with each other, such that the fittest individuals
survive and eventually evolve to do well in the given environ-
ment. In general, the basic steps of the LGP EA (Brameier
and Banzhaf, 2007) can be summarised as follows.

(a) Initialise a population of randomly generated programs
and evaluating their fitness.

(b) Perform two fitness tournaments with randomly selected
programs from the population and select the winning
programs.

(c) Make temporary copies of the two winning programs.
(d ) Transform the two winning programs into offspring

subjected to genetic operations – that is, crossover and
mutation with certain probabilities.

(e) Replace the two tournament losing programs with the
temporary copies of the winning programs.

( f ) Repeat steps (b)–(e) until the termination or convergence
criteria are satisfied.

3. LGP-based modelling approach
The following section provides an overview of the data used in
the modelling process, followed by a detailed assessment of the
methodology adopted in developing the LGP-based models.

3.1 Database and data pre-processing
A comprehensive database containing the results of several
field trials undertaken by Broons, as presented in the authors’
recent work (Ranasinghe, 2017), is again utilised in the present
study. The database comprises in situ soil strength data in the
form of CPT results with respect to a varying number of roller
passes. CPT results are presented in terms of cone tip resistance
(qc) and sleeve friction ( fs) measurements. It is considered that
the differences between the individual measurements obtained
at essentially the same location prior to compaction (0 roller
passes) and after compaction (10, 20 roller passes etc.) effec-
tively quantify the variation in soil strength and density result-
ing from RDC. In total, 1977 data records are available after
averaging the CPT values over 0·2 m depth intervals from 103
CPT soundings. Further details of the CPT data are given by
Ranasinghe (2017).

This study takes into account the fundamental factors that
influence ground density improvement by means of soil com-
paction when deciding the appropriate model inputs and
outputs. The input variables used to develop the prediction
correlations are: the depth of measurement (D), cone tip resist-
ance (qci) and sleeve friction ( fsi) prior to compaction and the
number of roller passes (P), while the single output variable is

(a) (b)

float DiscipulusCFunction (float v[])
{
f[0]=0;
double Input000=v [0]; 
double Input001=v [1]; 

L0: f[0]+= v[0];
L1: f[0]+=–10;
L2: f[0]/=v[1];

return f[0];
}

–10V [0]

/

V [1]+

Figure 1. Comparison of the GP structures: (a) LGP and (b) TGP
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cone tip resistance after compaction (qcf). It is considered that
these input variables, either individually or collectively, address
the key factors that are the most influential in predicting
ground improvement due to the application of RDC. As such,
the physical properties of the soil, which include initial density,
soil type and moisture content, are accounted for in the CPT
data, where the initial density of the ground at a certain depth,
D, is indicated by qci, while the inclusion of fsi, together with
qci, provides an indirect and useful representation of soil type
in the LGP models through the friction ratio. Moreover, moist-
ure content is considered to be implicitly incorporated in the
CPT data, since penetrometer tests, such as the CPT, are them-
selves affected by the soil moisture at the time of testing. In
addition, the amount of energy imparted to the ground during
RDC is described in terms of the number of roller passes
and accounted for with the parameter P. The density of the
ground after the application of P roller passes is effectively
captured by the single model output qcf. The ranges of the
input and output variables involved in model development are
presented in Table 1.

Prior to LGP modelling, the available dataset is divided into a
series of subsets. In order to conduct a fair comparison
between the results obtained herein and those from the
previous ANN model (Ranasinghe, 2017), this study utilises
the same data subsets employed in the previous ANN
model development by the authors. In summary, the entire
dataset has been divided into two sets: a modelling dataset
(consisting of 1755 records from 91 CPT soundings) and a
verification dataset (consisting of 222 records from 12 CPT
soundings). The modelling dataset is used to train and validate
the LGP models and is adopted in the modelling phase.
However, the verification dataset is not a part of the
modelling phase in any capacity but is introduced into the
selected optimal LGP model in order to further verify its
capabilities.

For the LGP analysis, it is necessary to divide the modelling
dataset into three subsets: training, testing and validation. The
learning subset incorporates 80% of the entire dataset and con-
sists of the training and testing subsets. The programs are
genetically evolved and optimised to learn the input/output
relationships with respect to the training subset, while the
model’s generalisation capability is evaluated periodically
using the testing subset. Upon the completion of the LGP
model calibration, the remaining 20% of the data included in
the validation subset is presented to the optimal program as a
set of unseen data to assess its performance. However, it is
important to ensure that these three subsets are statistically
consistent so that they effectively represent the same popu-
lation, which is the ideal form of data division. It can be seen
in Table 2 that the subsets used in this study effectively rep-
resent the same population as evidenced by the similar

Table 1. Input/output variable ranges used in model development

Variables Range

Input
Depth of measurement, D: m 0·2–4·0
Cone tip resistance prior to compaction, qci: MPa 0·19–50·65
Sleeve friction prior to compaction, fsi: kPa 1·67–473·86
Number of roller passes, P 5–40
Output
Cone tip resistance after compaction, qcf: MPa 0·17–50·36

Table 2. Statistical properties of the data used in the LGP model development

Variable Data subset

Statistical parameters

Mean SD Minimum Maximum Range

Input
Depth, D: m Training 1·95 1·11 0·20 4·00 3·80

Testing 2·03 1·14 0·20 4·00 3·80
Validation 2·03 1·14 0·20 4·00 3·80

Cone tip resistance prior to compaction, qci: MPa Training 9·33 8·23 0·19 50·65 50·46
Testing 9·32 8·37 0·30 47·39 47·09
Validation 9·39 7·83 0·32 47·94 47·63

Sleeve friction prior to compaction, fsi: kPa Training 103·36 71·76 1·67 473·86 472·19
Testing 99·23 71·29 8·70 441·04 432·34
Validation 103·54 70·37 7·08 470·29 463·21

Number of roller passes, P Training 26·59 9·94 5·00 40·00 35·00
Testing 27·21 9·64 5·00 40·00 35·00
Validation 26·62 10·30 5·00 40·00 35·00

Output
Cone tip resistance after compaction, qcf: MPa Training 10·42 8·30 0·17 50·36 50·20

Testing 10·50 8·66 0·29 45·12 44·83
Validation 10·43 8·03 0·39 46·20 45·81

SD, standard deviation
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values of mean, standard deviation, minimum, maximum and
range.

The entire dataset is rescaled using the min–max normalisation
method. Although such data transformation is not strictly
necessary, it is usually recommended as it often improves the
effectiveness and the performance of the algorithm (Alavi and
Gandomi, 2012). Thus, prior to model development, both the

input and output variables are rescaled into the range of 0–1
using the following equation

1: xscaled ¼ xunscaled � xminð Þ
xmax � xminð Þ

where xmin and xmax are, respectively, the minimum and
maximum values of the x variable with respect to the training
dataset, as given in Table 2.

3.2 Model development using LGP
In this study, the commercially available software Discipulus
version 5.2 (Francone, 2010) is used for the LGP-based model
development. This is a supervised learning system, which
operates on the basis of the AIMGP platform. It can be con-
sidered to be an efficient modelling tool for complex problems,
but requires careful consideration in terms of parameter
selection.

It has been identified from the literature that the selection of
control parameters affects the model’s generalisation ability.
Therefore, different parameter settings, in terms of population
size, crossover rate and mutation rate, are investigated in this
study. Most of the other minor parameters are maintained at
the values recommended from similar applications (Alavi and
Gandomi, 2012; Baykasoğlu et al., 2008; Gandomi et al.,
2010; Heshmati et al., 2008). Furthermore, preliminary model-
ling observations are used when selecting the parameters, as
listed in Table 3.

In this study, a relatively large number of LGP projects are
carried out with the different parameter combinations dis-
cussed above. Furthermore, each parameter combination is
tested for five replications to permit different random initial
conditions. It is worth mentioning that an LGP project consists
of a successively generated series of runs, which may begin

Table 4. Performance statistics of the optimal LGP model

Data subset

Performance criteria

R RMSE: MPa MAE: MPa

Training 0·87 4·05 2·72
Testing 0·88 4·08 2·73
Validation 0·87 4·03 2·71

Table 3. Parameter settings for the LGP algorithm

Parameter Settings

Function set +, −, �, /, absolute, square root,
trigonometric (sin, cos), exponential

Population size 500, 1000, 2000, 5000, 7500, 10 000
Number of demes 10, 20
Initial program size 80 bytes
Maximum program size 512 bytes
Mutation frequency 50 and 90%
Block mutation
frequency

40%

Instruction mutation
frequency

30%

Instruction data
mutation frequency

30%

Crossover frequency 50 and 95%
Homologous crossover
frequency

95%
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Figure 2. Measured against predicted qcf for the optimum LGP model with respect to: (a) testing and (b) validation datasets
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with short runs, and the length of the runs may be permitted
to increase as the project continues. This study makes use of
mean square error (MSE) as the fitness function, as discussed
above, and thus the evolved programs are monitored for
minimum error. Each of the LGP projects is given a reasonable
time (ranging from a few minutes to 20+ h) to evolve, and the
project is terminated when no further improvement in model
performance is likely to occur.

The resulting LGP models are evaluated using several perform-
ance measures with respect to each of the three data subsets
and compared. The criteria used to evaluate the performance
of the evolved program models include the coefficient of

correlation (R), root mean square error (RMSE) and mean
absolute error (MAE).

4. Optimal model results
In this section, the details of the optimal LGP-based model
are presented along with the performance analysis results. The
robustness of the optimal model is investigated using a para-
metric study, and the details of the sensitivity analysis are pre-
sented. In addition, the selected optimal LGP model for
predicting the cone tip resistance after compaction (MPa) is
presented in computing code in the C language in the
Appendix.
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Figure 3. Variation of qcf with different number of roller passes at qci = 2 MPa and: (a) fsi = 50 kPa, (b) fsi = 100 kPa, (c) fsi = 150 kPa,
(d) fsi = 200 kPa
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4.1 Performance analysis
In selecting the optimal model, the program models generated
from the LGP projects are compared based on the perform-
ance measures in terms of R, RMSE and MAE, as discussed
above. The model yielding the lowest error and highest R with
respect to the validation data subset is considered to be
optimal, and Table 4 presents the statistical performance of the
selected optimal LGP model.

It is evident that the selected optimal model is able to predict
accurately the target values as evidenced by the high values of

R and low prediction errors indicated by RMSE and MAE.
According to Smith (1986), when R>0·8 and the errors are
relatively small, there exists a strong correlation between the
measured and predicted values. Thus, it can be considered that
the optimal LGP model yields reliable estimates of the
ground’s cone tip resistance due to RDC.

Figure 2 compares the measured and predicted qcf values with
respect to the testing and validation set data. It is apparent
that the model has learnt the input/output mapping very effec-
tively, which is demonstrated by the very good estimates when
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Figure 4. Variation of qcf with different number of roller passes at qci = 5 MPa and: (a) fsi = 100 kPa and (b) fsi = 200 kPa
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presented with a new set of unseen data. The optimal model
predictions are scattered within an envelope of 0·5–2 times the
measured values, which can be considered as a reasonable
band of accuracy for the ground improvement predictions
given the uncertainties involved.

4.2 Parametric study
In order to assess the generalisation ability and the robustness
of the selected optimal LGP-based model, a parametric study
is conducted, which evaluates the sensitivity of the model
output – that is, qcf, to the variations in the input parameters

D, qci, fsi and P. This involves investigating the model’s
response to a hypothetical input dataset, where the input vari-
ables are varied one at a time, while all other input variables
remain constant at a pre-defined value. It is important to
ensure that the variables fluctuate only within the range fixed
by the training dataset since the model performs best as an
interpolation predictor rather than by extrapolation beyond the
calibrated range. In this study, the output, qcf, is examined
while the input variables adopt the following values: qci = 2, 5,
8, 10, 15, 20 MPa; fsi = 50, 100, 150, 200 kPa and the number
of roller passes, P=10, 20, 30, 40. Figures 3–8 present the
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optimal model predictions of qcf with respect to the variations
in the input variables.

The results of the parametric study indicate that the soil
strength continuously improves with increasing numbers of
roller passes at a given location. For instance, in Figure 3(a), it
can be observed that qcf consistently rises when the number of
roller passes increases systematically from 10 to 40 passes
while qci and fsi remain constant at the pre-defined values of
2 MPa and 50 kPa, respectively. A similar trend is also
observed when fsi is varied between 50 and 200 kPa, while qci
remains constant at 2 MPa (Figures 3(b)–3(d)). Furthermore,
the effect of varying qci is also investigated as illustrated in
Figures 3–6. It is evident that when qci increases from 2 to
10 MPa at a given depth, qcf always improves to a value higher
than qci, consistently indicating some level of ground improve-
ment. However, from Figures 3–6, it is also evident that qcf is
less sensitive to variations in fsi, as indicated by the modest
changes in qcf when fsi increases from 50 to 200 kPa, while the
other variables remain constant. Nevertheless, it can be con-
cluded that the model predictions are reliable in the sense that
the model replicates the expected underlying physical behav-
iour of RDC compaction and can be considered to be robust.

As can be seen from Figures 3–6, the trends and relationships
between the qcf predictions and the variations of the other
input parameters are appropriate and conform to the expected
behaviour. However, in contrast, the qcf predictions are less sat-
isfactory when the model is exposed to relatively high qci
values. As shown in Figures 7 and 8, the predicted qcf values
are negatively correlated with the number of roller passes when
qci is either 15 or 20 MPa. However, from a theoretical per-
spective, it is difficult to justify the irregular nature of the qcf

curves that result from high qci values and with respect to
increasing numbers of roller passes. As such, these figures
suggest that the developed LGP model has been unsuccessful
in capturing the non-linear relationship between qcf and P
appropriately in the presence of higher values of qci (i.e.
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Table 5. Comparison of the performance statistics of optimal
LGP- and ANN-based models

Data subset

Performance criteria

R RMSE: MPa MAE: MPa

LGP ANN LGP ANN LGP ANN

Training 0·87 0·87 4·05 4·19 2·72 2·89
Testing 0·88 0·87 4·08 4·33 2·73 3·03
Validation 0·87 0·86 4·03 4·16 2·71 2·93
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>10 MPa). This may be attributed to the fact that the LGP
model has not been appropriately calibrated for higher values
of qci, which is likely due to the poor representation of such
high qci values in the database. From an examination of the
dataset used for the model calibration, it is evident that there
is a paucity of such data in the existing CPT database, where
the majority of the CPT records (�60%) in the dataset used for
the model calibration represent the lower range of qci – that is,
below 10 MPa. This could be attributed to the fact that the
RDC in most projects is usually applied to initially loose, but
not very dense, ground. As such, the developed LGP model is
not well calibrated for the higher values of qci and therefore,
the selected LGP model is suggested to be well suited for the
cases with low qci values – that is, below 10 MPa, where the
initial ground condition is loose to medium dense. However,
the applicability and the accuracy of the developed model can
be further enhanced by incorporating more data from
additional RDC-related projects so that it may enhance the
generalisation ability of the LGP model into a wider span of
qci values.

4.3 Sensitivity analysis
In this study, a sensitivity analysis is also carried out to investi-
gate the contribution of each input variable to the final model
predictions. Discipulus is capable of examining the frequency
of each input variable appearing in the 30 best selected pro-
grams (Francone, 2010). In this LGP-based modelling process,
the frequency obtained for all the input variables – that is, D,
qci, fsi and P, is equal to 1, which indicates that these variables
have been appearing in all of the 30 best programs evolved
using LGP. Nonetheless, the average and maximum effect of
removing the corresponding variable from the 30 best pro-
grams is calculated relative to each input variable, and the
results are presented in Figure 9. As can be observed, all the

input variables have an almost identical effect on the output if
they are removed and, therefore, it is considered that all the
selected input variables are highly significant with respect to
the qcf predictions. However, as indicated by the average
impact measure, qci has the greatest effect when compared with
the other input parameters.

5. Comparative study
In this section, the results obtained from the LGP simulations
are compared with those obtained from the ANN-based model
recently developed by the authors (Ranasinghe, 2017) using
several measures. First, the performances of both models are
again evaluated using R, RMSE and MAE, and the results
are presented in Table 5. It is observed that, overall, both
models exhibit similar performance. Therefore, it can be con-
sidered that both models are capable of predicting the target
values to a high degree of accuracy, as indicated by the strong
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Figure 10. Measured against predicted qcf with respect to validation dataset for: (a) LGP model predictions and (b) ANN model
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Table 6. Performance statistics of LGP and ANN models with
respect to verification data

CPT location

R RMSE: MPa MAE: MPa

LGP ANN LGP ANN LGP ANN

Port Botany – 30 0·96 0·96 4·21 3·63 3·74 3·39
Port Botany – 11 0·86 0·84 3·37 3·65 2·65 2·86
Port Botany – 45 0·96 0·97 7·11 6·06 5·97 5·30
Port Botany – 35 0·71 0·72 3·96 3·75 3·15 2·51
Potts Hill – 37/44 0·27 0·42 2·86 3·15 1·79 2·12
Potts Hill – 27/54 0·51 0·44 1·60 2·23 1·27 1·93
Potts Hill – 24/57 0·58 0·53 2·89 2·88 2·29 2·17
Outer Harbor – EFC 5 0·85 0·84 2·31 3·15 1·89 2·84
Banksmeadow – C3 0·20 0·14 2·47 2·49 1·97 1·90
Cairns – CPT 2 0·54 0·61 4·68 4·26 3·32 2·95
Cairns – CPT 5 0·78 0·79 2·61 2·83 1·53 2·31
Cairns – CPT 8 0·96 0·94 2·02 2·55 1·59 2·27
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correlation coefficients – that is, R>0·8 (Smith, 1986),
together with the relatively low error values with respect to
each of the datasets. However, it is evident that the LGP
model yields slightly better R values and lower error values
compared with the ANN model and thus, the LGP-based
model marginally outperforms the ANN model.

Figure 10 compares the measured and predicted qcf values of
the optimal LGP and ANN models with respect to the vali-
dation set data. It can be clearly seen that there is a minimal
scatter given the measured and predicted values are in rela-
tively close agreement. Thus, it is evident that both the models
perform very favourably.

Finally, further verification of the LGP-based model’s predic-
tive capability is carried out using a completely new, additional
dataset, unseen by the model, that lies within the data limits of
the LGP model, as explained earlier. The verification dataset
was discussed previously in Section 3.1, and further details are
given there. The results are summarised in Table 6, together
with the corresponding statistics obtained from the ANN
model for comparison purposes. In addition, the performances
of both the optimal LGP and ANN models, with respect to
these additional CPTs, are presented graphically in Figure 11.
It is clear that both models perform very favourably with
respect to this series of unseen CPT data, although the results
in relation to R, RMSE and MAE present a somewhat incon-
sistent picture, as compared with those obtained thus far.
Nevertheless, it can be concluded that the LGP-based model
yields marginally superior performance to that of the ANN-
based model.

6. Summary and conclusions
This paper presents a unique approach for the prediction of
the effectiveness of RDC based on GP. A reliable database
consisting of CPT results obtained from several ground
improvement projects, associated with the Broons four-sided,
8 t ‘impact roller’, is utilised for the model development. The
emphasis of the present study is placed on a particular variant
of GP, namely LGP, which has significant benefits over most
other modelling approaches. The models incorporate four
input variables: depth (m), cone tip resistance (MPa) and
sleeve friction (kPa) prior to compaction and the number of
roller passes that, together, are considered to be the most effec-
tive in predicting the cone tip resistance after compaction
(MPa) as the single model output.

The selected optimal LGP model yields high accuracy in
model predictions with a coefficient of correlation (R) of 0·87,
an RMSE of 4·03 MPa and an MAE of 2·71 MPa, when
assessed using a set of unseen data. The optimal model is eval-
uated by means of a parametric study and it is apparent that
the model is robust and has appropriately captured the
input/output non-linear relationships. However, this investi-
gation has revealed that the model performs best with initial

cone tip resistance (qci) values ≤10 MPa. Moreover, the contri-
butions of each of the input variables with respect to model
predictions are investigated in a sensitivity analysis and it is
observed that each of the input variables is highly relevant to
the prediction of cone tip resistance after compaction (qcf).
Finally, the LGP simulations are compared with the existing
ANN model subjected to several performance measures and
both models are compared using a series of unseen CPT data.
The results indicate that the LGP-based model marginally out-
performs the ANN model and overall produces slightly more
accurate predictions.

The LGP approach presented in this paper is considered to be
valuable during the pre-planning and pre-design phases.
However, it is not expected to replace or undervalue the impor-
tance of field trials. It is, nevertheless, a worthwhile additional
tool for ground improvement projects involving RDC.
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Appendix
The selected optimal LGP program is represented in a C code
as follows.

Note that inputs 000, 001, 002 and 003 represent the depth of
measurement (m), initial cone tip resistance (MPa) and sleeve
friction (kPa) prior to compaction and the number of roller
passes, respectively.

float DiscipulusCFunction(float v[])
{

long double f[8];
long double tmp=0;
int cflag=0;
f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0;
L0: f[0]+=Input001;
L1: f[0]*=0·1595308780670166f;
L2: f[0]=sin(f[0]);
L3: f[1]+=f[0];
L4: f[1]+=f[0];
L5: f[0]−=f[0];
L6: f[0]=cos(f[0]);
L7: f[2]−=f[0];
L8: f[0]/=0·6593866348266602f;
L9: f[0]−=−0·8144187927246094f;
L10: f[0]*=Input003;
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L11: f[0]−=Input002;
L12: f[0]+=f[2];
L13: f[2]*=f[0];
L14: f[0]/=f[0];
L15: f[0]+=f[1];
L16: f[0]*=−0·5910544395446777f;
L17: f[0]+=f[2];
L18: f[2]+=f[0];
L19: f[0]=fabs(f[0]);
L20: f[3]+=f[0];
L21: f[0]=cos(f[0]);
L22: f[0]*=0·4784109592437744f;
L23: f[3]+=f[0];
L24: f[0]/=f[0];
L25: f[2]+=f[0];
L26: f[0]*=Input000;
L27: f[2]−=f[0];
L28: f[0]+=−0·6615190505981445f;
L29: f[0]*=−0·3511595726013184f;
L30: f[3]*=f[0];
L31: f[0]+=Input001;
L32: f[1]+=f[0];
L33: f[2]*=f[0];
L34: f[0]*=f[2];
L35: f[0]+=f[1];
L36: f[0]=C_F2XM1;
L37: f[3]*=f[0];
L38: f[0]−=f[0];
L39: f[0]−=f[2];
L40: f[0]=sin(f[0]);
L41: f[3]−=f[0];
L42: f[0]*=f[0];
L43: f[3]+=f[0];
L44: f[1]−=f[0];
L45: f[0]−=Input002;
L46: f[0]*=0·2955143451690674f;
L47: f[1]−=f[0];
L48: f[0]*=f[2];
L49: f[0]+=Input001;
L50: f[0]+=f[0];
L51: f[3]−=f[0];
L52: f[0]+=Input001;
L53: f[0]+=f[0];
L54: f[0]*=Input000;
L55: f[0]−=f[1];
L56: f[0]=sin(f[0]);
L57: f[0]*=f[0];
L58: f[0]+=Input001;
L59: f[0]/=0·8695814609527588f;
L60: f[0]+=Input001;
L61: f[0]*=Input003;
L62: f[0]+=Input001;
L63: f[0]−=Input000;
L64: f[0]+=Input001;
L65: f[0]−=Input002;

L66: f[0]=fabs(f[0]);
L67: f[3]+=f[0];
L68: f[0]−=0·2995789051055908f;
L69: f[0]+=f[1];
L70: f[0]+=−0·6615190505981445f;
L71: f[0]*=−0·3288925886154175f;
L72: f[0]*=0·2570122480392456f;
L73: f[3]*=f[0];
L74: f[0]−=f[3];
L75: f[0]+=Input001;
L76:
if (!_finite(f[0])) f[0]=0;
return f[0];

}

REFERENCES
Alavi AH and Gandomi AH (2012) Energy-based numerical models

for assessment of soil liquefaction. Geoscience Frontiers 3(4):
541–555.

Alavi AH and Sadrossadat E (2016) New design equations for estimation
of ultimate bearing capacity of shallow foundations resting on rock
masses. Geoscience Frontiers 7(1): 91–99.

Avalle DL (2004a) Ground improvement using the ‘square’ impact
roller-case studies. In Proceedings of the 5th International
Conference on Ground Improvement Techniques, Kuala Lumpur,
Malaysia (Faisal A (ed.)). CI-Premier Pty Limited, Singapore,
Singapore, pp. 101–108.

Avalle DL (2004b) Use of the impact roller to reduce agricultural water
loss. In Proceedings of the 9th ANZ Conference on Geomechanics,
Auckland, New Zealand (Farquhar G, Kelsey P, Marsh J and
Fellows D (eds)). New Zealand Geotechnical Society Inc.,
Auckland, New Zealand, vol. 2, pp. 513–518.

Avalle DL (2006) Reducing haul road maintenance costs and improving
tyre wear through the use of impact rollers. In Proceedings of
Mining for Tyres Conference, Perth, Australia, p. 5.

Avalle DL (2007) Trials and validation of deep compaction using the
‘square’ impact roller. In Proceedings of AGS Symposium –

Advances in Earthworks, Sydney, Australia, pp. 63–70.
Avalle DL and Carter JP (2005) Evaluating the improvement from

impact rolling on sand. In Proceedings of the 6th International
Conference on Ground Improvement Techniques, Coimbra, Portugal
(Jefferson I and Pinto IM (eds)). CI-Premier Pty Limited,
Singapore, Singapore, p. 8.

Avalle DL, Scott BT and Jaksa MB (2009) Ground energy and impact of
rolling dynamic compaction – results from research test site. In
Proceedings of the 17th International Conference on Soil Mechanics
and Geotechnical Engineering, Alexandria, Egypt (Hamza M,
Shahien M and El-Mossallamy Y (eds)). IOS Press, cop.,
Washington, DC, USA, vol. 9, pp. 2228–2231.

Banzhaf W, Nordin P, Keller RE and Francone FD (1998) Genetic
Programming: An Introduction. Morgan Kaufmann,
San Francisco, CA, USA.
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